

université BORDEAUX

Station Marine d'Arcachon

Université de Bordeaux - C.N.R.S. UMR **E**nvironnements et Paléoenvironnements Océaniques et **C**ontinentaux

Jacquets - Rapport final de la première étape - 2019

Juillet 2019

X. de MONTAUDOUIN J. PAILLE **B. GOUILLIEUX** M. MEYNADIER S. HELIOT N. LAVESQUE

Laboratoire EPOC (UMR 5805) - Station Marine Arcachon - Université de Bordeaux - CNRS

Equipe ECOBIOC/Plateforme biodiversité

Jacquets - Rapport final de la première étape - 2019

Responsable scientifique : X. de Montaudouin $(UMR\ EPOC)^1$

Assistants scientifiques : J. Paillé

B. Gouillieux (UMR EPOC)

M. Meynadier

S. Heliot

N. Lavesque (UMR EPOC)

Assistants techniques : F. Prince, L. Letort, P. Rieucaud, A. Karimabohi $(INSU^2)$

Juillet 2019

¹ Unité Mixte de Recherche, CNRS- Université de Bordeaux

² Institut National des Sciences de l'Univers

Résumé

Dans le cadre du nettoyage de l'estran des Jacquets, une analyse des peuplements benthiques a été réalisée et a abouti aux conclusions suivantes :

- Les travaux n'ont pas modifié la granulométrie des sédiments de surfaces intertidaux qui restent des sables fins envasés. En revanche la teneur en matière organique a été multipliée par 2, ce qui peut s'expliquer par la remise en circulation d'éléments fins et l'écrasement des récifs d'huîtres.
- Les mêmes constatations sont faites dans le chenal adjacent, composé de sables moyens, avec un accroissement encore plus élevé de la teneur en matière organique des sédiments sur la dernière année.
- L'ensemble des paramètres quantitatifs décrivant les peuplements benthiques de la macrofaune intertidale et subtidale (abondance, biomasse, richesse spécifique) n'a été altéré ni par les travaux, ni (en intertidal) par les modalités (« à sec » vs. « en eau »).
- En termes de composition spécifique, les légères modifications dans la composition des espèces n'altèrent pas la diversité fonctionnelle des sites toujours dominée par les espèces détritivores.
- La mégafaune subtidale a subi quelques modifications dans sa structure, et fera l'objet d'un troisième point en décembre 2019 dans le cadre d'une étude « Jacquet 2 » portant sur une surface intertidale plus vaste.

SOMMAIRE

1.	Introduction	5
2.	Matériel et méthode	7
	Résultats	
3.1.	Zone intertidale	10
	Zone subtidale	
	3.2.1. Prélèvements à la benne	
	3.2.2. Prélèvements à la drague	15
4.	Discussion	17
5.	Références	19
AN	NEXE 1	20
AN	NEXE 2	21

1. Introduction

A la demande du Préfet, un groupe de travail s'est réuni en mai 2016 sur le thème du nettoyage du domaine public maritime du Bassin d'Arcachon. Une première action proposée consistait à réhabiliter le site du Banc des Jacquets (**Figure 1**), en explorant plusieurs modalités d'intervention tout en « mesurant » l'impact des opérations prévues.

Finalement, la méthode choisie, notamment sur des critères de faisabilité et d'efficacité, a consisté à enlever les ferrailles et les poches et aplanir l'estran avec un chenillard adapté. Deux modalités ont cependant été suivies

ESSAI n°1 : Chenillard opérant à basse mer (à sec).

ESSAI n°2 : Chenillard opérant en eau.

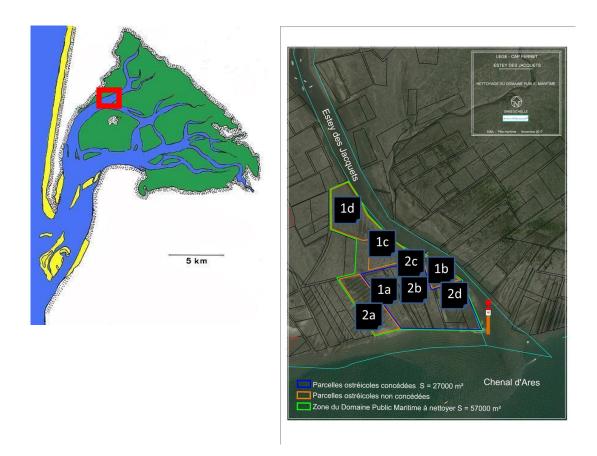


Figure 1 : Zone présumée des travaux et stations intertidales échantillonnées, sur le site des Jacquets (Bassin d'Arcachon) (1c et 1d pour ESSAI 1 et les autres pour ESSAI 2).

La zone d'étude avait déjà été échantillonnée en 1988 et 2001-03. Deux stations intertidales (Arc-193 & Arc-209) et 3 stations subtidales (Graouères-8; ARE; Arc-10) géographiquement et écologiquement comparables avaient été prélevées (http://resomar-benthos.epoc.u-bordeaux1.fr) (**Figure 2**).

- Intertidal Arc-193 s'inscrit dans les récifs d'huîtres sauvages de bas niveau tels que caractérisés par Blanchet (Faciès N) (2004). L'abondance était de 9244 ind/m² (dans la gamme des valeurs de ce faciès qui est autour de 6233 ind/m²), dominée par les huîtres, les vers oligochètes (*Tubificoides benedeni*), les amphipodes (*Melita palmata*) et les vers annélides (par exemple *Heteromastus filiformis*). La richesse spécifique moyenne de ce type d'habitat est autour de 32 espèces avec une biomasse de 205 gPSSC/m².
- Intertidal Arc-209 s'inscrivait dans les vases sableuses de bas niveau telles que caractérisées par Blanchet (Faciès II) (2004). L'abondance est de 1656 ind/m² (dans la gamme des valeurs de ce faciès qui est de 1982 ind/m²), dominée par un petit bivalve (lucine) et les vers annélides. La richesse spécifique moyenne de ce type d'habitat est autour de 28 espèces avec une biomasse de 9 gPSSC³/m².
- Subtidal Arc10, Graouères-8 et ARE étaient des stations de sables moyens échantillonnées entre 1988 et 2003 et caractérisées par une faune peu dense (entre 300 et 600 ind/m²) et avec une richesse spécifique comprise entre 9 et 22 espèces.

_

³ Poids Sec Sans Cendres (voir méthodologie)

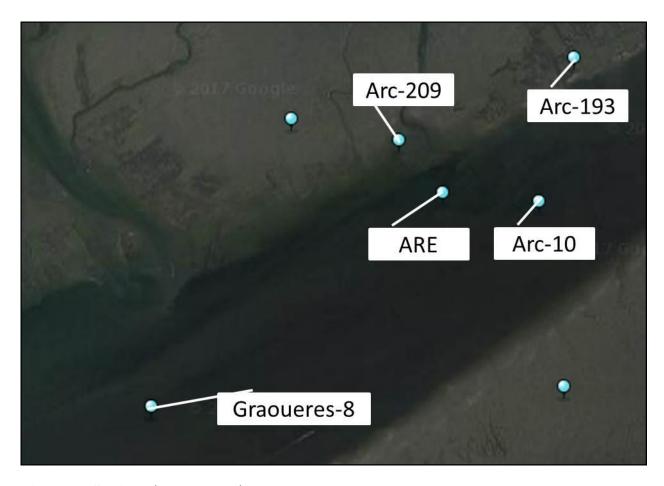


Figure 2 : Stations échantillonnées entre 1988 et 2003 dans la zone d'étude.

2. Matériel et méthode

L'étude proposée intègre les trois paramètres fondamentaux caractérisant la faune benthique :

- ✓ Richesse spécifique
- ✓ Abondance
- ✓ Biomasse

Par ailleurs, la granulométrie et la matière organique des sédiments ont été mesurées.

La macrofaune benthique a été suivie en intertidal et en subtidal, et selon des pas de temps différents, respectivement 6 et 12 mois.

• Recolonisation de l'estran en fonction de la technique de nettoyage.

Huit prélèvements de 15x15x15 cm³ ont été réalisés à pied et au carottier, tamisés sur maille de 1 mm², fixés au formol 4% et colorés au Rose Bengal. Deux stations concernent la modalité « à sec » et 6 stations la modalité « en eau » (Figure 1).

Ces prélèvements ont été réalisés avant travaux (29 janvier 2018), à 6 mois (18 juin 2018) et à 12 mois (11 décembre 2018).

• Impact des travaux sur la macrofaune du chenal d'Arès

Afin de suivre l'éventuel impact des travaux (panache turbide) sur le chenal adjacent, ce dernier a été échantillonné avant travaux (7 décembre 2017) et un an après (11 décembre 2018):

- ✓ A la benne Van Veen (0.1 m²) avec un prélèvement par station.
- ✓ A la drague (maille de 1 cm²; ouverture de 1 m) avec un traict de 60 m par station.

Les stations subtidales sont reportées sur la Figure 3

Figure 3: Stations d'échantillonnage (benne et drague) dans le chenal d'Arès, à proximité de la zone des travaux.

Le tri des individus a été effectué au laboratoire et l'identification des espèces réalisée sous la loupe binoculaire. Les biomasses ont été estimées en poids sec sans cendre⁴ (poids sec - poids

_

⁴ PSSC dans le reste du texte

des cendres), qui représente le poids sec de matière organique. Le poids sec est atteint après 48 h à l'étuve à 60°C. Les cendres sont obtenues après calcination pendant 4 h à 450°C.

• Traitements statistiques et analyse des données

Abondance, biomasse et richesse spécifique des peuplements macrobenthiques <u>intertidaux</u>, et paramètres sédimentaires ont été comparés en fonction du temps $(T_0, T_{6mois}, T_{12mois})$ et des modalités de travaux (Essais 1 et 2) par une analyse de variance à 2 facteurs, après vérification des conditions d'application. De même, abondance, biomasse et richesse spécifique des peuplements benthiques <u>subtidaux</u>, et paramètres sédimentaires ont été comparés en fonction du temps (T_0, T_{12mois}) par une analyse de variance à 1 facteur, après vérification des conditions d'application. Le cas échéant, un test de Tukey était réalisé pour estimer les différences de moyennes 2 à 2. Dans tous les cas, le seuil de significativité était de 5%

Par ailleurs, les peuplements de la macrofaune et de la mégafaune benthiques ont été comparés au moyen d'une analyse des correspondances (distance euclidienne, méthode de Ward). Cette méthode graphique permet de regrouper les stations par similarité d'après la présence des espèces et leur abondance (transformée en $\log(x+1)$). Ainsi, sur un tel plan, deux stations aux peuplements benthiques similaires seront à une distance relative faible.

3. Résultats

3.1. Zone intertidale

Les travaux n'ont pas modifié la nature des sédiments de surface qui demeurent des sables fins avec une médiane granulométrique comprise entre 126 et 230 µm et une teneur en pélites comprise entre 0,5 et 17,3% (p>0,05) quels que soient le mode de travaux ou le temps (Tableau 1). En revanche, le pourcentage de matière organique dans les sédiments de surface a été multiplié par 4-5 sur la dernière période passant de 2,26 % (temps initial et + 6 mois) à 9,13 % (+12 mois) (p<0,001) (Tableau 1, Annexe 1).

Tableau 1 : Résultats des tests statistiques (ANOVAs à 2 facteurs) comparant les différents paramètres des peuplements de la macrofaune et des paramètres sédimentaires, en fonction du temps (avant travaux, +6 mois après et +12 mois après) et la modalité de travail du chenillard (à sec ou en eau). En gras, différences significatives.

Paramètre	Sources de variation	F	p	Test de Tukey
Abondance	Temps (T)	1,32	0,29	
	Mode travaux (M)	0,34	0,57	
	T x M	1,05	0,37	
Biomasse	Temps (T)	1,90	0,18	
	Mode travaux (M)	0,47	0,50	
	T x M	0,90	0,43	
7.1		0.07	0 = 1	
Richesse spécifique	Temps (T)	0,35	0,71	
	Mode travaux (M)	0,15	0,70	
	T x M	0,24	0,79	
Médiane	Temps (T)	1,19	0,33	
	Mode travaux (M)	4,17	0,06	
	T x M	1,15	0,34	
% Pélites	Temps (T)	0,91	0,42	
	Mode travaux (M)	2,79	0,11	
	T x M	0,12	0,88	
% MO	Temps (T)	48,44	<0,001	[Initial=+6] < [+12]
	Mode travaux (M)	2,10	0,16	
	T x M	1,74	0,20	

En zone intertidale, l'ensemble des paramètres des peuplements de la macrofaune n'est affecté ni par le temps (T_0 , $T_{6\text{mois}}$, $T_{12\text{mois}}$), ni par les modalités (et/ou la différence nord-sud) (p>0,05). Ainsi, l'abondance moyenne est de 2494 ind/m², la biomasse moyenne est de 7,29 gPSSC/m² et la richesse spécifique moyenne est de 13,7 espèces (Figure 4).

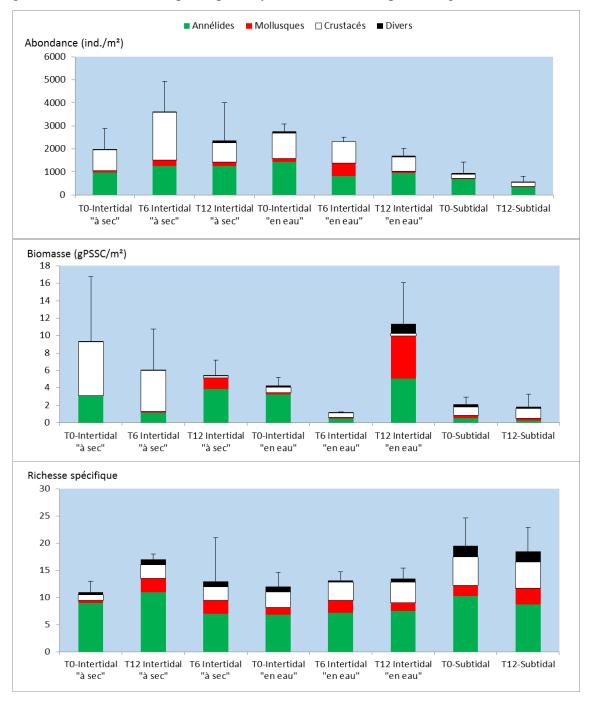


Figure 4 : Abondance, biomasse et richesse spécifique moyennes (+ 1 erreur standard) de la macrofaune benthique selon le niveau tidal (intertidal vs. subtidal), le temps (avant travaux (T0), 6 mois après (T6) et 12 mois après (T12)) et la modalité de travail du chenillard (à sec ou en eau).

L'analyse des correspondances met en évidence trois nuages de points pour le domaine intertidal correspondant aux trois temps d'échantillonnage, sans que ne figure une discrimination liée à la modalité de travail (« en eau » ou « à sec ») (Figure 5). En considérant les 10 espèces dominantes (représentant entre 75 et 85% de l'abondance totale) (Tableau 2), trois espèces sont communes aux 3 dates : *Ampelisca brevicornis* (crustacé amphipode), premier rang avec 20 à 47% de l'abondance totale sur les 3 temps ; *Melinna palmata* (Annélide polychète) ; *Polycirrus* sp. (Annélide polychète). Le nuage correspondant à T6 est difficile à comparer car il correspond aussi à une saison différente. Cela se traduit notamment par un recrutement passager de coques et de moules qui ne s'installent pas. La discrimination à saison égale (T0 vs. T+12mois), n'est liée qu'au remplacement de quelques espèces représentant moins de 30% de l'abondance totale. Parmi ces espèces, on note l'apparition d'un amphipode exotique (*Grandidiriella japonica*), et cela depuis le T+6 mois (Lavesque *et al.*, 2014).

Le détail des abondances par espèce, station et date est en Annexe 2.

Tableau 2: 10 espèces dominantes de la zone intertidale, leur abondance (ind/m²), rang et % de l'abondance totale, en fonction du temps d'échantillonnage. En bleu, espèces communes aux 3 dates.

		TO		Т	+6 mois		T+12 mois							
	Abondance	Rang	%	Abondance	Rang	%	Abondance	Rang	%					
Ampelisca brevicornis	900	1	43%	1033	1	47%	283	1	20%					
Heteromastus filiformis	306	2	14%	56	5	3%								
Notomastus latericeus	189	3	9%	56	6	3%	78	5	5%					
Melinna palmata	89	4	4%	39	10	2%	106	4	7%					
Abra nitida	83	5	4%											
Euclymene oerstedii	72	6	3%											
Leucothoe sp.	44	7	2%											
Paradoneis sp	44	8	2%											
Cyathura carinata	39	9	2%											
Polycirrus sp.	33	10	2%	94	4	4%	250	2	17%					
Abludomelita obtusata							44	6	3%					
Aphelochaeta sp.							39	8	3%					
Cerastoderma edule				378	2	17%								
Grandidierella japonica				100	3	5%	33	10	2%					
Mytilus sp.				44	9	2%								
Paramysis nouveli							39	9	3%					
Phyllodoce mucosa				50	7	2%								
Pygospio elegans				44	8	2%								
Scoloplos armiger							44	7	3%					
Siphonoecetina sp.							194	3	13%					

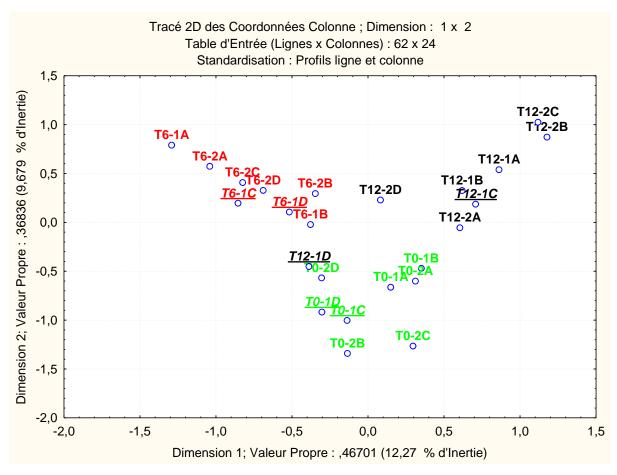


Figure 5 : Station intertidales - Analyse des correspondances situant les « stations x temps » selon la composition des communautés benthiques, avec en vert les stations x0, en rouge les stations x1 mois, et en noir les stations x2 mois. En souligné italique les stations intertidales travaillées à sec.

3.2. Zone subtidale

3.2.1. Prélèvements à la benne

Les travaux n'ont pas modifié la nature des sédiments de surface qui demeurent des sables fins pour la station SUB1 (médiane de 191 à 209 μ m) et des sables moyens pour les trois autres (288-347 μ m), et une teneur en pélites comprise entre 0,47 et 3,8% pour les 4 stations (p>0,05) (Tableau 3). En revanche, le pourcentage de matière organique dans les sédiments de surface a été multiplié par 17 sur la dernière période passant de 0,38 % (temps initial) à 6,26 % (+12 mois) (p<0,001) (Tableau 3, Annexe 1).

Tableau 3 : Résultats des tests statistiques (ANOVA à 1 facteurs) comparant les différents paramètres des peuplements de la macrofaune et des paramètres sédimentaires, en fonction du temps (avant travaux et +12 mois après). En gras, différences significatives.

Paramètre	Sources de variation	F	p
Abondance	Temps	0,42	0,20
Biomasse	Temps	<0,01	0,95
Richesse spécifique	Temps	0,02	0,89
Médiane	Temps	0,01	0,91
% Pélites	Temps	<0,01	0,99
% MO	Temps	202,53	<0,001

En zone subtidale, l'ensemble des paramètres des peuplements de la macrofaune n'est pas affecté par le temps $(T_0, T_{12\text{mois}})$ (p>0.05) (Figure 4 ; Tableau 3). Ainsi, l'abondance moyenne est de 7581 ind/m², la biomasse moyenne est de 1,96 gPSSC/m² et la richesse spécifique moyenne est de 19,0 espèces (Figure 4).

L'analyse des correspondances ne met pas en évidence une discrimination nette entre les 2 dates avec une variabilité entre les stations et les dates assez grandes (Figure 6). En considérant les 10 espèces dominantes (représentant entre 66 et 76% de l'abondance totale) (Tableau 4), 5 espèces sont communes aux 2 dates : une annélides polychètes (*Goniada* sp.) et deux crustacés *Urothoe brevicornis* et *Diogenes pugilator*. Le détail des abondances par espèce, station et date est en Annexe 2.

Tableau 4: 10 espèces dominantes de la zone subtidale, leur abondance (ind/m²), rang et % de l'abondance totale, en fonction du temps d'échantillonnage. En bleu, espèces communes aux 2 dates.

		T0		T-	+12 mois	
	Abondance	Rang	%	Abondance	Rang	%
Polycirrus sp.	250	1	27%			
Notomastus latericeus	158	2	17%			
Prionospio fallax	73	3	8%			
Urothoe brevicornis	55	4	6%	25	5	4%
Diogenes pugilator	40	5	4%	73	2	13
Spio symphyta	40	6	4%			
Streblospio shrubsolii	28	7	3%			
Heteromastus filiformis	23	8	2%			
Euclymene oerstedii	20	9	2%			
Goniada sp.	15	10	2%	30	4	5%
Prionospio fallax				123	1	22%
Ophelia neglecta				40	3	7%
Paradoneis sp.				18	6	3%
Nassarius reticulatus				18	7	3%
Gastrosaccus spinifer				18	8	3%
Poecelochaetus serpens				15	9	3%
Hippomedon denticulatus				13	10	2%

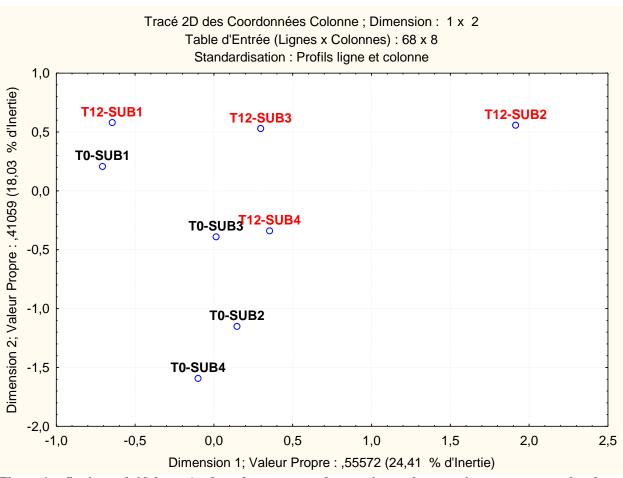


Figure 6 : Station subtidales - Analyse des correspondances situant les « stations x temps » selon la composition des communautés benthiques, avec en noir les station x et en rouge les stations x temps » selon la composition des communautés benthiques, avec en noir les station x et en rouge les stations x temps » selon la composition des communautés benthiques, avec en noir les station x et en rouge les stations x et en rouge les st

3.2.2. Prélèvements à la drague

Un total de 18 espèces de la mégafaune a été échantillonné en 2017 contre 19 en 2018, représentant une communauté classique des milieux hétérogènes (fonds plutôt coquilliers) (Tableau 5). Des espèces emblématiques comme les hippocampes ou les dromies ont été capturées en 2017 mais non en 2018. Des espèces exotiques à potentiel invasif, en particulier les crépidules, ont été échantillonnées les deux années. L'abondance totale de la mégafaune a légèrement diminuée au cours du temps. La baisse importante de biomasse (/4,5) en 2018 est principalement liée à une espèce, l'ascidie *Ascidiella adspersa*. Cependant, ces variations sont négligeables par rapport à la variabilité spatiale et ne sont donc pas significatives, que ce soit dans le cas de l'abondance (p=0,89), de la biomasse (p=0,51) ou de la richesse spécifique (p=0,93).

Tableau 5: Liste des espèces capturées à la drague à coquille de 1 m de large et 1 cm de maille. Les valeurs sont moyennées chaque année (4 replicats par an) et correspondent à une surface de 60 m². L'abondance est le nombre d'individus et la masse est exprimée en poids frais (g).

			exprimée en poids frais (g). Abondance							
			2017	2018	Biom 2017	2018				
SPONGIAIRE	S									
	Cliona sp.	Eponge perforante	0,3	0,3	36,5	4,3				
	Dysidaea fragilis			0,3		2,0				
MOLLUSQUE	S									
	Cerastoderma edule	Coque commune	1,0	1,3	5,5	5,8				
	Chlamys varia	Petoncle	0,8		1,5					
	Crassostrea gigas	Huître japonaise	0,8		98,8					
	Crepidula fornicata	Crépidule	9,0	8,8	31,8	50,0				
	Cyclope neritea	Cyclonasse		0,5		0,5				
	Dentalium	Dentale		0,3		0,3				
	Nassarius reticulatus	Nasse réticulée	5,0	12,0	9,3	22,5				
	Ocenebra erinacea	Perceur	1,8	0,3	5,0	0,8				
	Ocinebrelus inornatus	Perceur asiatique		2,5		9,8				
	Ruditapes philippinarum	Palourde japonaise		0,3		1,8				
CRUSTACES										
	Carcinus maenas	Crabe vert	16,5	9,8	153,3	90,3				
	Clibanarius erythropus		0,5	0,3	2,8	3,0				
	Crangon crangon	Crevette grise		0,3		0,3				
	Diogenes pugilator		13,8	27,0	22,5	44,5				
	Dromia personata	Dromie	0,3		4,8					
	Liocarcinus arcuatus		1,8	0,3	3,8	0,3				
	Liocarcinus holsatus		1,0		2,0					
	Macropodia rostrata	Macropode	1,0	1,0	0,8	1,3				
	Pisa armata	Pise	1,0	0,3	1,0	0,3				
PROCORDES										
	Ascidiella adspersa	Ascidie	53,0	4,8	862,3	36,8				
	Molgula manhatansis	Molgule		1,8		4,5				
TELEOSTENS										
	Hippocampus brevirostris	Hippocampe à museau court	0,5		1,5					
	Syngnathus typhle	Syngnathe	0,3		1,0					
			2017	2018						
		RICHESSE SPECIFIQUE	18	19						
		ABONDANCE (60 m²)	108,0	71,5						
		BIOMASSE (60 m ²)	1243,8	278,5						

4. Discussion

La faune benthique est considérée comme un bon indicateur des changements environnementaux (Dauvin, 1993; Lavesque *et al.*, 2009; Do, 2012).

La faune des sables fins envasés observée en zone intertidale présente des valeurs de biomasse « classiques » pour ce type de milieu (Blanchet, 2004) et une composition faunistique également habituelle. Les travaux n'ont pratiquement eu aucun impact sur le peuplement de la macrofaune en général. Le cortège d'espèces dominantes était, et reste, 1 an après les travaux, composé en grande partie d'organismes détritivores, notamment annélides polychètes et crustacés amphipodes. Le seul paramètre environnemental mesuré qui marque une différence nette est la teneur en matière organique qui est plus que doublée. Cela peut sans doute s'expliquer par la remise en suspension des particules fines lors des travaux puis leur sédimentation, et surtout par le broyage des récifs d'huitres. Cependant, cette tendance n'était pas encore marquée 6 mois après les travaux et ne s'est révélée qu'au bout de 1 an. L'analyse des correspondances montre également que la communauté à 6 mois est légèrement différente et cela est en grande partie une conséquence saisonnière, avec en particulier le recrutement de bivalves qui ne tiendra pas dans le temps. Enfin, les modalités de travaux, « à sec vs. en eau » n'ont eu d'impact ni sur les peuplements, ni sur les caractéristiques sédimentaires.

L'augmentation de la teneur en matière organique est également une tendance forte sur la zone subtidale où elle augmente d'un facteur 17, et également sur les 6 derniers mois. Cela ne change en rien la diversité fonctionnelle (trophique) du peuplement de la macrofaune qui reste dominée par des détritivores mais modifie quand même légèrement la structure spécifique du peuplement. Les caractéristiques de cet assemblage faunistique sont typiques des sables moyens envasés du bassin d'Arcachon, correspondant aux assemblages V1-V2 (Blanchet *et al.*, 2005). Les répercussions sur la mégafaune subtidale ne concernent ni la richesse spécifique, ni l'abondance. En revanche, la biomasse est plus faible un an après travaux, mais cela est dû principalement à une espèce, *Ascidiella adspersa*. Soit cette espèce suspensivore a été affectée par la remise en suspension massive de sédiment (douteux puisque coques et crépidules ont parfaitement survécu), soit il s'agit d'un aléa d'échantillonnage (ce que suggère la non significativité de cette évolution de biomasse). Cette dernière hypothèse est renforcée par le fait que ces tuniciers n'ont été récoltés que sur 1 traict (SUB1). Il est possible que les mêmes raisons expliquent la disparition des syngnathidés (hippocampes et

syngnathes) ou des dromies (crabes) lors de la seconde campagne. Une troisième campagne dans le cadre d'une autre étude sur les Jacquets est programmée en décembre 2019 et pourra faire un point sur cette question.

Si les prélèvements de la mégafaune à la drague font ressortir une faune comprenant quelques espèces exotiques communément rencontrées dans ces chenaux (*Crassostrea gigas*, *Crepidula fornicata, Ocinebrellus inornatus* (Pigeot *et al.*, 2000; Lützen *et al.*, 2012; de Montaudouin *et al.*, 2018)), la macrofaune n'est pas épargnée avec l'apparition de quelques espèces exotiques. Certaines de ces espèces sont classiques comme *Cyclope neritea* (Sauriau, 1991), d'autres présentent des signes d'expansion comme *Grandidiriella japonica* (Lavesque et al., 2014).

5. Références

- **Blanchet H.** (2004) Structure et fonctionnement des peuplements benthiques du Bassin d'Arcachon. PhD thesis, University Bordeaux 1.
- Blanchet H., de Montaudouin X., Chardy P. and Bachelet G. (2005) Structuring factors and recent changes in subtidal macrozoobenthic communities of a coastal lagoon, Arcachon Bay (France). Estuarine Coastal and Shelf Science, 64, 561-576.
- **Dauvin J.-C.** (1993) Le benthos : témoin des variations de l'environnement. *Océanis*, 19(6), 25-53.
- **de Montaudouin X., Blanchet H. and Hippert B.** (2018) Relationship between the invasive slipper limpet *Crepidula fornicata* and benthic megafauna structure and diversity, in Arcachon Bay. *Journal of the Marine Biological Association of the United Kingdom*, 98(8), 201-2028.
- **Do V.T.** (2012) Evolution et santé des herbiers à Zostera noltii dans le Bassin d'Arcachon à travers la dynamique de la macrofaune benthique associée. PhD, Bordeaux 1.
- **Lavesque N., Blanchet H. and de Montaudouin X.** (2009) Development of a multimetric approach to assess perturbation of benthic macrofauna in *Zostera noltii* beds. *Journal of Experimental Marine Biology and Ecology*, 368, 101-112.
- Lavesque N., Gouilleux B., de Montaudouin X., Bachelet G., Bonifacio P. and Simonet E. (2014) Premier signalement de l'espèce introduite *Grandidiriella japonica* Stephensen, 1938 (Crustacea : Amphipoda : Aoridae) dans le bassin d'Arcachon. *An aod*, 3, 11-19.
- Lützen J., Faasse M., Gitten berger A., Glenner H. and Hoffmann E. (2012) The Japanese oyster drill *Ocinebrellus inornatus* (Récluz, 1851) (Mollusca, Gastropoda, Muricidae), introduced to the Limfjord, Denmark. *Aquatic Invasions*, 7(2), 181-191.
- **Pigeot J., Miramand P., Garcia-Meunier P., Guyot T. and Séguignes M.** (2000) Présence d'un nouveau prédateur de l'huître creuse, *Ocinebrellus inornatus* (Récluz, 1851) dans le bassin conchylicole de Marennes-Oléron. *Comptes Rendus de l'Académie des Sciences de Paris*, 323, 697-703.
- **Sauriau P.-G.** (1991) Spread of *Cyclope neritea* (Mollusca: Gastropoda) along the northeastern Atlantic coasts in relation to oyster culture and to climatic fluctuations. *Marine Biology*, 109, 299-309.

ANNEXE 1

Valeurs détaillées de l'abondance, la biomasse et la richesse spécifique de la macrofaune, ainsi que des paramètres sédimentaires, en fonction du temps et du mode de travaux (= Position, avec « Nord = à sec » et « Sud = en eau »).

Stations	Temps	Position	Abondance (m²	Biomasse (m²)	Richesse spécifique	Médiane granulométrique	Pélites (%)	%MO
1c	Initial	Nord	2888,82	16,76888889	13	153	10,57	0,77
1d	Initial	Nord	1066,6	1,933333333	12	135	16,66	3,63
1c	6 mois	Nord	4933,26	10,73777778	16	203	5,92	1,17
1d	6 mois	Nord	2311,03	1,391111111	18	150	14,26	3,81
1c	12 mois	Nord	4000	7,177777778	21	175	9,89	9,67
1d	12 mois	Nord	711,1111111	3,64444444	5	126	16,58	12,96
SUB1	Initial	Subtidal	880	2,269	29	191	3,8	0,25
SUB2	Initial	Subtidal	400	1,204	20	326	1,67	0,17
SUB3	Initial	Subtidal	2310	4,07	24	339	2,53	0,65
SUB4	Initial	Subtidal	90	0,052	5	339	0,47	0,46
SUB1	12 mois	Subtidal	1230	6,218	29	209	2,34	6,78
SUB2	12 mois	Subtidal	470	0,343	14	328	2,91	6,99
SUB3	12 mois	Subtidal	370	1,142	22	347	1,56	6,05
SUB4	12 mois	Subtidal	200	0,348	9	288	1,63	5,23
1a	Initial	Sud	4177,7	5,662222222	15	166	6,94	0,45
1b	Initial	Sud	3288,81	41,34666667	15	180	6,1	3,01
2a	Initial	Sud	4399,88	8,04444444	25	179	11,77	2,2
2b	Initial	Sud	1377,74	2,008888889	8	171	17,29	2,66
2c	Initial	Sud	2044,41	3,431111111	8	230	11,51	5,66
2d	Initial	Sud	1244,43	1,968888889	4	163	11,12	0,79
1a	6 mois	Sud	2533,28	0,86222222	10	159	11,21	2,01
1b	6 mois	Sud	3022,16	1,502222222	15	185	4,32	1,23
2a	6 mois	Sud	2177,68	1,19555556	19	176	7,15	2,73
2b	6 mois	Sud	2533,28	1,457777778	9	175	4,93	1,29
2c	6 mois	Sud	2977,71	1,08888889	13	179	10,34	3,25
2d	6 mois	Sud	2088,82	0,72	14	195	5,07	1,45
1a	12 mois	Sud	2133,333333	5,40444444	18	164	11,38	8,77
1b	12 mois	Sud	1244,444444	6,591111111	15	188	5,02	8,13
2a	12 mois	Sud	2844,444444	33,6	19	148	15,89	7,94
2b	12 mois	Sud	1066,666667	10,04	11	182	0	7,13
2c	12 mois	Sud	2088,888889	11,80444444	11	175	4,02	10,84
2d	12 mois	Sud	800	0,697777778	7	166	12,36	7,59

ANNEXE 2 Liste taxonomique et abondance par station et par date. T1 = T+6mois et T2 = T+12 mois.

Abondance m ²																																
							Γ0									Ī	1				T2 2D 1A 1B 1C 1D 2A 2B 2C 2D SUB1 SUB2 SUB3 SUB4											
Étiquettes de lignes	1A	1B	1C	1D	2A	2B	2C	2D	SUB1	SUB2	SUB3	SUB4	1A	1B	10	1D	2A	2B	2C	2D	1A	1B	10	1D	2A	2B	20	2D	SUB1	SUB2	SUB3	SUB4
Abludomelita obtusata									10												311				44				20			
Abra alba									20						44																10	
Abra nitida	133			44	178	89	222																									
Abra segmentum																	89	44		89												
Ammothella longipes																														10		
Ampelisca brevicornis	2711	1022	1733	89	667	711	44	222	50				1200	133	3644	222	800	1289	400	578		133	400		533	356	622	222	10		30	
Amphioxus lanceolatum										10																						
Antalis entalis																							89			44	89				10	
Anthozoa					44					10											44	44	89			44			10		10	
Aphelochaeta sp							222								44	222				44	44	44	133			44		44	20			
Apseudopsis latreillii									10																							
Arcuatula senhousia																							44									
Ascidiella aspersa																													20		10	
Bathyporeia pelagica										30																				20		20
Bittium reticulatum	44		44	44							10																			20	10	
Calyptraea chinensis										10																						
Carcinus maenas															44						44								10			
Cerastoderma edule													178	222	222	133	89	356	1467	356			44	44							10	
Crangon crangon																	44															
Crepidula fornicata																													10			
Cyathura carinata							311																44		44				10			
Cyclope neritea																													10		10	10
Diogenes pugilator	44								30	20	110											44							290			
Diopatra neopolitana																									44							
Dolichopodidae							44																									
Echinocyamus pusillus																														10		
Elasmopus thalyae									30																							
Eteone sp										10																						
Euclymene collaris																													30		10	
Euclymene oerstedii	89	133	89		267				50	10	20																		30			
Eunice sp																						44										
Exogone verugera													44																			
Fabulina fabula									20																							
Galathowenia oculata		44	44	89	1067				10																				20			
Gastrosaccus spinifer										10																				40	30	
Gibbula umbilicalis																					44				44							
Glycera sp			89	133	133		133	44	10	10	40			44			44			44		178	311	133	_	44		178		10	20	10
Goniada sp											60																		10	90	20	
Grandidierella japonica					133						10		222	44		133	222	89	44	44	89	44			133							
Heteromastus filiformis	44	89	133			133	978	933	50		40				133					_	44		89	44								
Hippomedon denticulatus					-55										- 55								Ť							50		
Hypereteone foliosa					44																											
Idotea sp									20																							
Iphinoe serrata																					44											
Kurtiella bidentata															44																	
Leiochone leiopygos	311	667	311	ДЛ	400	ДЛ							578	356		356	267	356	578	ΔΔΛ	122	172	533	80	844		178	ΔЛ				

							T0									Т	1										T2					
Étiquettes de lignes	1A	1B	1C	1D	2A	2B		2D	SUB1	SUB2	SUB3	SUB4	1A	1B	1C	_	2A	2B	2C	2D	1A	1B	1C	1D	2A	2B			SUB1	SUB2	SUB3	SUB4
Lekanesphaera sp										10	10					89	44		44													
Leucothoe denticulata																-							356		44				20			
Leucothoe sp		311			44																											
Lumbrineridae																44																
Lumbrineris sp											10															44	44					
Macropodia rostrata									10																							
Magelona filiformis									20																				10			
Marphysa sanguinea																						44				44	44		10			
Melinna palmata		89	178	178	44	133	29								44	178	44			44	178	44	44	400	178	77	77					
Mytilus sp		03	170	170		133	03						89			170	44			222	170	77		100	170							
NAssarius reticulatus		44							10	10			0.0				77			222		44			44				70			
Nemertea	44	44	44		89				20	10	30			44		44						44	89		44	133			20		10	
Nephtys cirrosa	#	#	44		03				10	10	10			**		44							03			133			20		10	20
	89	44	89						10	10	10						44															20
Nephtys hombergii Nereididae	03	44	03						10								44												10			
	170	E 70		267	400				10	10	610		00	44	00	44	44	44	44	11	211		170		44		00		10		20	
Notomastus latericeus	178	578		267	489				10	10	610		89	44	89	44	44	44	44	44	311		178		44		89				30	
Ocenebra erinacea											10														44					120	20	
Ophelia neglecta									40		20																			130	30	
Ophiura ophiura									10		30	- 10																		10		
Owenia fusiformis			44	44					30			10	44	89	44		89		44										30			
Paradoneis sp			44	89	178	44			30	10	20					44									44				20	30		20
Paramysis (Longidentia) nouveli	44				44	44													44													
Paramysis nouveli																					44		44		178		44			10		
Pectinaria koreni																												89			10	
Perinereis cultrifera																					44					44						
Peringia ulvae															44		44												10		10	
Perioculodes longimanus																											44				10	10
Phaxas pellucidus																			44													
Phoronidae						178				20				44																		
Phyllodoce mucosa													44		89	133	44		89													
Phyllodoce sp																					44											
Phylo foetida																44						44										
Pisidia longicornis									20																							
Poecilochaetus serpens											20												178						30			30
Polititapes rhomboides											10																					
Polycirrus sp	178	44			44						990	10		222		178	44	178	89	44	489	44	222		222	222	667	133	10		10	
Polydora hoplura													44				44															
Polyplacophora		89			44									44								44	89		89							
Pomatoceros sp																													10			
Prionospio fallax					133				180		110										44		44						420		60	10
Pseudopolydora sp				44					10						44													44				
Pygospio elegans														133	44	44	44		44	44												
Sabellidae									10																				10			
Scolelepis (Scolelepis) squamata										10		30																				
Scolelepis squamata																														20		
Scoloplos armiger	89	44			44				20		10										89		133			44	89		20		10	
Siphonoecetina	133	44			44				40	10		10		44			89	133	44		89	267			133		178	44				
Spio symphyta			44		133				130	10	20							44											40			
Streblospio shrubsolii	44							44		10	100			44	44	133				44												
Tubificoides benedii											-50					44																
Urothoe brevicornis										160	30	30				H														20	10	70