

Apports atmosphériques

en Hydrocarbures Aromatiques Polycycliques (HAP)

à l'écosystème aquatique du Bassin d'Arcachon

- Rapport final -

2013

DARCACHON

SYNDICAT INTERCOMMUNAL

Coordination :

Eric VILLENAVE, Université Bordeaux I EPOC-LPTC, CNRS UMR 5805 – Bat A12 351 cours de la Libération, 33405 Talence cedex Tel : 05 4000 6350 E-mail : eric.villenave@u-bordeaux1.fr

BASSIN

Avant-propos

Ce projet coordonné par l'Université Bordeaux I a été financé par le Syndicat Intercommunal du Bassin d'Arcachon (SIBA) et l'Agence de l'Eau Adour-Garonne. Il a été mené de façon concertée en association étroite avec le projet OSQUAR (Ostréiculture et Qualité du milieu – Approche dynamique du Bassin d'Arcachon), financé par le Conseil Régional d'Aquitaine, qui se proposait d'identifier les apports atmosphériques en HAP à l'écosystème aquatique du Bassin d'Arcachon. Celui-ci est aussi venu en complément d'un projet de recherche cofinancé par l'ADEME et le Ministère de l'Ecologie, de l'Energie, du Développement Durable et de la Mer (MEEDDAT), via le programme de recherche PRIMEQUAL « Pollution de proximité : entre traceurs et indicateurs », la Région Aquitaine et le CNRS, qui a permis le financement de la thèse de MIIe Amélie GUILLON sur la détermination des sources des HAP atmosphériques (ayant permis de développer une approche expérimentale permettant de préciser l'origine des HAP détectés dans l'atmosphère en reliant leur présence à leur source).

Personnels impliqués

EPOC-LPTC, UMR 5805 CNRS – Université Bordeaux 1 :

Eric VILLENAVE, Professeur à l'Université Bordeaux 1 Hélène BUDZINSKI, Directrice de recherche CNRS Emilie PERRAUDIN, Maître de Conférences à l'Université Bordeaux 1 Pierre-Marie FLAUD, Ingénieur de Recherche CNRS Karine LEMENACH, Ingénieur d'Etude CNRS Laurent PELUHET, Assistant Ingénieur CNRS

Amélie GUILLON, Doctorante Matthieu RIVA, Doctorant Geoffroy DUPORTE, Doctorant

Syndicat Intercommunal du Bassin d'Arcachon :

Adeline THEVAND, Ingénieur Environnement SIBA Sabine JEANDENAND, Directrice Générale des Services SIBA

Sommaire

Avant-propos	02
Personnels impliqués	02
Contexte	04
I. Les Hydrocarbures Aromatiques Polycycliques	06
I.1. Généralités	06
I.2. Les HAP atmosphériques	07
I.3. Réglementations françaises et européennes sur les HAP dans l'air	09
I.4. Toxicité	10
I.5. Les aérosols atmosphériques	11
I.5.a. Origine et sources	11
I.5.b. Impacts sanitaires et environnementaux	12
II. Matériel et méthodes	12
II.1. Matériel	12
II.1.a. Préleveur des phases particulaire et gazeuse	12
II.1.b. Mesures en ligne	14
Mesure de l'ozone	14
 Mesure des oxydes d'azote 	15
 Acquisition de données météorologiques 	16
II.1.c. Rétrotrajectoires de masse d'air	16
II.2. Méthodologies analytiques	17
II.2.a. Extraction accélérée par fluide pressurisé	17
II.2.b. Purification sur micro-colonnes	19
II.2.c. Analyse et quantification des HAP	19
III. Sites d'échantillonnage	22
IV. Résultats	23
V. Conclusion	28
VI. Valorisation	29
VI.1. Etudiants impliqués dans le projet	29
VI.2. Publications et communications relatives au projet	30
VII. Références bibliographiques	30
VIII. Annexes	33

Contexte

Un rapport IFREMER de 2008 a montré que la contamination des mollusques du Bassin d'Arcachon par les Hydrocarbures Aromatiques Polycycliques (HAP) (valeurs 2000-2004) était importante par rapport aux autres sites côtiers du littoral Manche-Atlantique et qu'elle augmentait depuis que ces composés étaient recherchés dans les huîtres (en 1996). En raison du caractère non linéaire du phénomène de bioaccumulation, il n'est guère possible d'extrapoler cette augmentation pour les années à venir. Cependant, on ne peut que constater que les valeurs atteintes à ce jour ne sont plus très éloignées de la valeur guide de 500 µg.kg⁻¹ déterminée par l'AFSSA après le naufrage du pétrolier Erika. Dans ce contexte, plusieurs travaux de recherche ont été lancés, comme le programme Ascobar, soutenu par le Conseil Régional d'Aquitaine, dans le but de mieux caractériser la contamination en HAP et d'identifier leurs sources. Les travaux entrepris jusqu'ici se sont intéressés uniquement au milieu aquatique aussi il a été choisi ici de se focaliser plus particulièrement sur les apports atmosphériques potentiels vers le compartiment aquatique. Ceux-ci peuvent être non négligeables, comme cela a été par exemple démontré dans le cas de l'estuaire de la Seine dans le cadre du programme Seine-Aval (Motelay et al., 2006).

Les hydrocarbures aromatiques polycycliques sont des composés organiques largement distribués dans l'atmosphère et sont parmi les premiers polluants atmosphériques à y avoir été identifiés comme cancérigènes. Dans l'air ambiant, les HAP ont des sources multiples, partagées essentiellement en cinq catégories différentes : sources domestiques, transports, industrie, agriculture et sources naturelles. Il est aujourd'hui établi que ces composés sont essentiellement d'origine pyrolytique, provenant de la combustion incomplète de la matière organique (carburants, charbon, bois,..) à haute température, et qu'ils se répartissent selon leur taille entre les phases gazeuse et particulaire de l'atmosphère.

Les sources industrielles sont très nombreuses à défaut d'être prédominantes en France. Parmi les plus importantes figurent la production d'énergie, l'incinération des déchets, la production de fer, d'acier et d'aluminium, les activités industrielles pétrochimiques, les activités industrielles basées sur l'emploi de bitume et d'asphalte, la fabrication de pneus...

Les sources domestiques comme le chauffage sont de petites sources individuelles, mais sont nombreuses et répandues, et peuvent, selon les conditions, conduire à l'émission localisée d'une quantité importante de HAP. Par exemple l'importance du retour du chauffage au bois dans une optique de développement raisonnable et durable peut être une source importante de HAP.

Le transport est une source importante d'introduction des HAP dans l'atmosphère, notamment en milieu urbain ou péri-urbain. Tous les véhicules à moteur à combustion, automobiles, aériens, ferroviaires et par voie d'eau contribuent aux émissions atmosphériques de HAP. D'autres sources, liées au transport, participent à l'émission atmosphérique des HAP, comme les phénomènes d'usure de pneus, de revêtements routiers et de freins. L'agriculture, et plus particulièrement les activités de brûlis, nettoyage de jardins et de défrichement par le feu impliquent la combustion de matière organique ayant pour conséquence l'émission de HAP à des niveaux de concentrations localement élevés.

Une fois émis dans l'air, les HAP peuvent être transportés loin de leurs sources, réagir ou être photo-dissociés puis retomber par dépôt gravitationnel ou par lessivage de l'atmosphère. Ceux-ci pourront alors se retrouver répartis dans les différents compartiments de l'environnement (bassins, milieux marins et fluviaux, sédiments et sols).

Les travaux proposés dans le cadre de ce projet ont donc porté sur le compartiment atmosphérique. Il s'est agi de documenter la contamination de ce compartiment en HAP puis de caractériser les flux vers le compartiment aquatique. Les stations d'échantillonnage atmosphérique ont été définies en différents points caractéristiques du Bassin. Certaines campagnes de prélèvements ont été effectuées en intégrant l'effet de saisonnalité (hiver et été) important dans le cas des HAP, de façon à couvrir au mieux les différentes sources potentielles précitées.

Notons que l'ensemble de ces travaux n'a été rendu possible que grâce à l'expertise du Syndicat Intercommunal du Bassin d'Arcachon (SIBA) qui a facilité la mise à disposition de sites d'échantillonnage.

I. Les Hydrocarbures Aromatiques Polycycliques

I.1. Généralités

Les HAP sont constitués uniquement d'atomes de carbone et d'hydrogène et sont composés au minimum de deux cycles aromatiques. Cette famille compte plus d'une centaine de composés dont 16, présentés sur la Figure 1, sont considérés comme prioritaires par l'Agence de Protection Environnementale américaine (US-EPA) en raison d'effets préoccupants sur la santé.

Figure 1 : Présentation des 16 HAP classés prioritaires par l'US-EPA

Il existe plusieurs voies de formation des HAP mais la combustion incomplète de la matière organique à haute température (500-800°C) reste la voie de formation majeure de ces molécules (Ravindra et al., 2008). Malgré des sources naturelles non négligeables (feux de forêts, éruption volcanique...), la source anthropique (trafic automobile, chauffage, industrie...) reste de loin une des principales préoccupations de santé publique. C'est pourquoi leur étude est indispensable.

Les HAP sont des molécules stables, relativement persistantes dans l'environnement, hydrophobes, ayant un poids moléculaire important et de ce fait une pression de vapeur saturante faible (de 0,25 Torr pour le naphtalène à 7,48 x 10⁻¹⁰ Torr pour le coronène à 298K). Les HAP sont ainsi omniprésents dans l'air ambiant urbain sous formes gazeuse et particulaire et peuvent atteindre des concentrations toxiques pour la santé. Leurs

concentrations varient fortement selon le lieu de prélèvement, les conditions climatiques ou encore l'heure de la journée.

I.2. Les HAP atmosphériques

Lors de leur transport dans l'atmosphère, les HAP sont potentiellement soumis à différents processus entrainant leur dégradation par les principaux oxydants atmosphériques (radical hydroxyle OH, ozone O₃, oxydes d'azote NO_x). La photochimie joue également un rôle majeur dans leur réactivité et leur dégradation. Une étude (Park et al., 2002) a montré une corrélation entre l'intensité des radiations solaires et la concentration en HAP. Si l'intensité solaire augmente, la formation d'ozone est favorisée, ce qui permet une dégradation plus rapide des HAP. Il est ainsi intéressant de mesurer les concentrations de HAP sur les différents sites de prélèvements en lien avec les concentrations en ozone.

Le Tableau 1 présente des valeurs moyennes de concentrations en HAP particulaires prélevés sur différents sites caractéristiques :

Sites de prélèvement	Périodes de prélèvement	Σ ΗΑΡ (ng.m ⁻³)	Références
	Zone urbaine		•
Leipzig, Allemagne Taranto, Italie Taranto, Italie Hong Kong, Chine Hong Kong, Chine São Paulo, Brésil	1999-2002 Hiver 2004 Eté 2004 Hiver 2001 Eté 2001 Hiver 2000	2,08 69,68 8,16 54,72 5,82 34,65	Rehwagen et al., 2005 Di Filippo et al., 2010 Di Filippo et al., 2010 Guo et al., 2003 Guo et al., 2003 Masih et al., 2010
	Zone Industrielle		
La Plata, Argentine Taichung, Taiwan	1999-2002 2002-2003	7,26 100,3	Rehwagen et al., 2005 Fang et al., 2004
	Zone montagneus	е	
Ovre, Norvège (728m) Gossenkölle, Autriche (2413m) Redo, Espagne (2240m)	Mars-Juillet 1998 1996-1997 1996-1997	0,3-1,2 0,2-0,7 0,1-0,2	Fernandez et al., 2002 Fernandez et al., 2002 Fernandez et al., 2002
	Zone périurbaine		1
Athènes, Grèce Leipzig, Allemagne	Juin-Nov 2003 1999-2002	3,08 1,53	Vasilakos et al., 2007 Rehwagen et al., 2005

Tableau 1 : Somme des concentrations en HAP particulaires mesurées sur différents sites

Ces différents résultats, obtenus sur différents sites de prélèvements très variés, démontrent la nécessité de considérer les saisons lors des comparaisons de différentes régions. En effet, outre les sources locales, les conditions météorologiques peuvent influer considérablement sur l'abondance et la spéciation des HAP particulaires. La variation saisonnière des HAP est généralement attribuée à l'augmentation des émissions durant les saisons froides due par exemple à l'utilisation d'énergie fossile pour le chauffage domestique.

Selon leurs propriétés physico-chimiques, les HAP vont se répartir dans l'atmosphère entre la phase particulaire et la phase gazeuse (Figure 2). Ainsi, la pression de vapeur saturante des composés va déterminer leur répartition entre ces deux phases. En effet, les HAP les plus légers, dont les pressions de vapeur saturante sont élevées, seront majoritairement présents dans la phase gazeuse alors que les HAP de plus haut poids moléculaire seront plutôt liés aux particules. La température ambiante influe logiquement sur cette répartition. C'est ainsi que l'on observe une répartition différente des HAP selon les saisons (Guo et al., 2003).

Figure 2 : Partition gaz/particule des HAP dans l'atmosphère de Hong-Kong (Guo et al., 2003)

Les concentrations en HAP dans les zones urbaines sont souvent supérieures à celles observées dans les zones périurbaines ou montagneuses. Cependant, le transport atmosphérique permet d'atteindre une zone géographique peu polluée. L'étude de différents paramètres (concentrations en polluants, conditions météorologiques, origine des masses d'air prélevées) est donc indispensable pour comprendre et expliquer l'origine d'une pollution atmosphérique.

I.3. Réglementations françaises et européennes sur les HAP dans l'air

A l'heure actuelle, dans la réglementation française, seul le benzo(a)pyrène est soumis à une valeur seuil à respecter au 31 décembre 2012, à savoir 0,1 ng/m³ en moyenne annuelle sur les particules PM₁₀ (directive n°2004/107/CE du 15 décembre 2004) car il est défini comme traceur des composés cancérigènes dans l'atmosphère. Cette valeur a été fixée dans le cadre de la mise en place de la directive-cadre européenne de 1996 (directive n°96/62/CE) sur l'évaluation et la gestion de la qualité de l'air ambiant. Dans le but d'homogénéiser les techniques de mesures sur le territoire européen, la norme EN 15549:2008 «Air quality - Standard method for the measurement of the concentration of benzo(a)pyrène dans l'air ambiant.

De façon globale, le protocole d'Aarhus adopté en 1998 suite à la Convention de Genève (1979) a pour objectif (entre autres) de réduire les émissions de HAP par rapport à leur niveau de 1990 mais sans préciser de niveaux de concentrations. Les quatre HAP ciblés sont le benzo(a)pyrène, le benzo(b)fluoranthène, le benzo(k)fluoranthène et l'indéno(1,2,3-cd)pyrène. Divers procédés ou solutions sont proposés dans le but de réduire les émissions de diverses sources qu'elles soient issues d'activités industrielles ou domestiques. Ce protocole est comme tout texte législatif en perpétuelle évolution et fait l'objet de modifications, notamment avec le règlement n°850/2004 de la Commission Européenne.

Mis à part ces deux textes, toutes les normes sur les HAP concernent les techniques d'échantillonnage et de mesures dans l'air ambiant ou dans le cadre d'exposition professionnelle. La norme NF X 43-025 « Qualité de l'air – Air ambiant. Détermination des Hydrocarbures aromatiques polycycliques. Dosage par chromatographie liquide haute performance et par chromatographie gazeuse » définit depuis 1988 deux méthodes d'extractions (Soxhlet et ultrasons) et d'analyse (HPLC-fluorescence et GC-FID) pour sept HAP (benz(a)anthracène, benzo(k)fluoranthène, benzo(b)fluoranthène, benzo(a)pyrène, dibenzo(ah)anthracène, benzo(ghi)pérylène et indéno(1,2,3-cd)pyrène) dans l'air ambiant.

La norme ISO 12884:2000 « Air ambiant – Détermination des hydrocarbures aromatiques polycycliques totales (phase gazeuse et particulaire) – Prélèvement sur filtres à sorption et analyse par chromatographie en phase gazeuse/spectrométrie en masse » est une norme internationale sur l'analyse des HAP en phase gazeuse (utilisation de mousses en polyuréthane) et particulaire (utilisation de filtres), dans laquelle 22 HAP sont visés. De même, une seconde norme ISO (ISO 16362:2005) se focalise plus particulièrement sur l'analyse des HAP particulaires par chromatographie liquide à haute performance couplée à la détection fluorimétrique.

Compte-tenu de la prépondérance des HAP dans l'atmosphère, il convient de s'intéresser à leur place dans la physico-chimie atmosphèrique. En effet, du fait de leurs propriétés, ces composés vont être réactifs face à l'action des oxydants ou à des processus photochimiques, pour former des produits potentiellement plus toxiques que leurs composés parents.

I.4. Toxicité

Les HAP sont connus, depuis de nombreuses années, pour leurs effets néfastes sur la santé. En effet, l'exposition prolongée à certains de ces composés conduit à une augmentation du risque de développer un cancer (Okona-Mensah et al, 2005). Ils sont reconnus pour induire de nombreux effets toxiques (hépatiques, hématologiques, immunologiques...), des effets néfastes sur la reproduction ainsi que des effets génotoxiques et cancérigènes.

Les HAP, à l'image du benzo[a]pyrène (Figure 3), sont des molécules pro-génotoxiques puisqu'une fois absorbés par l'organisme, ils peuvent être activés par des enzymes, qui leur permettent d'exercer leur pouvoir mutagène. Cette activation se déroule en deux étapes : dans un premier temps, les étapes de fonctionnalisation, par l'intermédiaire d'enzymes (le cytochrome P450 et l'époxyde hydrolase) conduisent à la formation d'un diol-époxyde, qui peut être responsable d'adduits à l'ADN. Ces mutations peuvent, à terme, aboutir au développement de cancers ; cependant, dans un second temps, une phase de détoxification des HAP conduit à la formation de composés conjugués qui seront ensuite éliminés par excrétion (voie urinaire ou biliaire).

Parmi les HAP, l'un des plus étudiés est le benzo[a]pyrène qui est l'une des molécules les plus cancérogènes du groupe, et qui a été mise en cause dans le cas de nombreux cancers tels que celui du poumon.

Figure 3 : Activation métabolique du benzo[a]pyrène par formation de diols-époxydes

Il existe également d'autres formes d'activation des HAP (formation d'o-quinone, de radical cationique et d'ester benzylique). Ces métabolites très électrophiles sont susceptibles de réagir avec les bases nucléophiles de l'ADN. Si ces lésions ne sont pas réparées, elles pourront conduire au développement de tumeur, de cancers et donc induire la mort de l'individu.

Les aérosols atmosphériques, support des HAP les plus lourds, et donc principal vecteur de leur transport dans les voies respiratoires, font l'objet aujourd'hui d'un grand intérêt de par leurs rôles multiples, tant sanitaires, qu'environnementaux ou climatiques.

I.5. Les aérosols atmosphériques

Leurs sources d'émission, leur composition chimique, leur réactivité, leur toxicité ainsi que leurs impacts sur le climat et la qualité de l'air (Pöschl, 2005) font des aérosols atmosphériques l'un des problèmes de pollution de l'air les plus complexes.

I.5.a. Origine et sources

Les aérosols sont des particules solides ou liquides en suspension dans la phase gazeuse. Ils ont des sources aussi nombreuses que variées. Ils peuvent être introduits dans l'atmosphère de façon naturelle tels les sels de mer, l'érosion des sols et des roches (poussières minérales), les éruptions volcaniques, les feux de forêts mais aussi des processus biologiques (pollens, virus...). L'apport anthropique est beaucoup moins important comme présenté dans le Tableau 2. Cependant, la taille, la composition chimique ainsi que les impacts sanitaire et environnemental des aérosols anthropiques sont beaucoup plus préoccupants. De plus, ces particules sont concentrées dans des aires géographiques souvent beaucoup plus restreintes (Renoux, 1998).

Les principales sources anthropiques sont le transport, les industries, le chauffage domestique mais aussi l'incinération de déchets.

Ovisina da la		Intensi	té (Mt/an)
Origine de la	Sources	Estimation	Estimation
source		moy.	min et max
	NATURELLES		
	Primaire		
	Poussières minérales	1500	1000-3000
	Poussieres minerales	1300	1000-10000
	Seis de mer	33	4-10000
	Débris biologiques	50	26-80
00%	Debris biologiques		
90%	Secondair	es	
	Sulfates biogéniques	90	80-150
	Sulfates volcaniques	12	5-60
	Aérosols organiques secondaires	55	40-200
	Nitrates	22	15-50
	TOTAL	3060	2170-23540
	ANTHROPIQUES		
	Primaires	5	
	Suies	20	5-20
	Poussières industrielles	100	40-130
	Secondair	es	
10%	Feux de végétation	80	60-160
	Sulfates anthropiques	140	120-250
	Nitrates anthropiques	36	25-65
	Aérosols organiques	10	5-52
	TOTAL	390	300-710

 Tableau 2 : Quantités de particules émises dans l'atmosphère en Mt/an (Laj et Sellegri, 2003)

Il est intéressant de classer les particules suivant leur mode de formation. Si les aérosols primaires sont introduits directement dans l'atmosphère sous forme solide ou liquide, les aérosols secondaires peuvent se former par la condensation de substances gazeuses dont la pression de vapeur saturante est suffisamment basse pour que le composé soit aussi présent sous forme solide ou liquide (Laj et Sellegri, 2003). On parle alors de processus de conversion gaz-particule. Ces processus amènent à la formation d'aérosols de taille nanométrique dont les effets sanitaires et environnementaux sont beaucoup plus néfastes de donc de grande actualité.

I.5.b. Impacts sanitaires et environnementaux

Les aérosols atmosphériques sont actuellement très étudiés puisqu'ils ont à la fois des impacts importants sur la santé humaine (Murr et al., 2009), la visibilité urbaine (Horvath, 2008) mais aussi sur les changements climatiques (Strawa et al., 2010).

L'impact sanitaire est principalement lié à la taille des particules. Plusieurs études récentes (par exemple Martins et al. 2010) montrent une corrélation entre leur taille et leur profondeur de pénétration dans l'organisme via l'appareil respiratoire. En effet, les particules ultrafines sont particulièrement dangereuses pour la santé puisqu'elles sont suffisamment petites pour pénétrer dans les alvéoles pulmonaires et atteindre ainsi la circulation sanguine. Ces dernières permettent la pénétration dans l'organisme de composés toxiques comme, par exemples les métaux lourds et bien sûr les hydrocarbures aromatiques polycycliques, qui utilisent les particules pour supports de dispersion.

Afin d'atteindre les objectifs fixés dans cette étude, plusieurs stations d'échantillonnage atmosphérique ont été prévues en différents points du Bassin pour initier une cartographie.

II. Matériel et méthodes

II.1. Matériel

La mesure des apports atmosphériques en HAP a été facilitée au cours de ce projet par l'achat et le développement d'un camion-laboratoire baptisé « Barracuda » (Figure 4), acquis avec l'aide du SIBA et du Conseil Régional d'Aquitaine. Sur chaque site, les phases atmosphériques particulaire et gazeuse ont été prélevées. En parallèle, des mesures en ligne de polluants atmosphériques (ozone et oxydes d'azote) ont été effectuées et couplées à l'acquisition de données météorologiques (température, pression, direction et vitesse du vent, pluviométrie) afin d'appréhender au mieux la qualité des masses d'air.

II.1.a. Préleveur des phases particulaire et gazeuse

L'échantillonnage des HAP a été effectué sur des durées globales d'une semaine, à l'aide d'un préleveur de particules atmosphériques à haut débit (30 m³/h) de type DIGITEL DA80 (Cf. Figure 5), acheté au début du projet. La particularité de ce préleveur est de récolter sur un filtre en fibre de quartz (de 150 mm de diamètre) l'ensemble de la matière particulaire de diamètre aérodynamique inférieur à 2,5 μ m, et la phase gazeuse, qui se retrouve piégée sur

une mousse adsorbante en polyuréthane, située sous le filtre. Chaque filtre intègre 24h de prélèvement, ce qui permet d'identifier ou d'isoler d'éventuels événements se déroulant sur les sites.

Figure 4 : Camion-laboratoire atmosphérique mobile « Barracuda »

Figure 5 : Préleveur de particules atmosphériques à haut débit

Le principe de fonctionnement de l'appareil (Figure 5) est le suivant : il consiste à aspirer l'air à travers la tête de prélèvement (1) où les particules de diamètres supérieurs à 2,5 μ m sont impactées sur de la graisse de silicone et à déposer les particules de diamètres inférieurs à 2,5 μ m sur un filtre en fibre de quartz de 150 mm de diamètre (2). La phase gazeuse est ensuite adsorbée, lorsque nécessaire, sur une mousse en polyuréthane (5,1 cm de hauteur) placée dans une nacelle sous le filtre. Le débit et le type de tête de prélèvement ont été choisis dans le but d'assurer la collection des particules du diamètre souhaité (dans notre cas, inférieur à 2,5 μ m). Celui-ci est régulé (5) tout au long du prélèvement en tenant compte des variations de température et de pression extérieures (1) et à l'intérieur (8) de l'appareil, ainsi qu'en prenant en compte l'évolution de la perte de charge induite par le dépôt des particules sur le filtre. Lors des prélèvements simultanés des phases particulaire et gazeuse, le suivi de ce paramètre est primordial pour ne pas atteindre la limite de l'appareil et sa mise en sécurité automatique (arrêt de l'aspiration). L'appareil enregistre toutes les conditions de prélèvement (températures, pressions, durée, arrêt, débit...) et délivre ainsi le volume réel d'air échantillonné.

Les supports de prélèvement sont préalablement conditionnés (four ou extraction, pyrolyse à 500°C pendant 4 heures) afin d'éliminer toute trace initiale de matière organique. Avant la mise en place d'un nouveau filtre et d'une nouvelle mousse, des blancs ont été réalisés permettant d'évaluer une éventuelle contamination lors de la manipulation des supports de prélèvements et de leur traitement sur le site. Ces blancs consistent à placer un filtre et une mousse propres dans le préleveur sans actionner la pompe et d'appliquer le même protocole de stockage que sur des prélèvements d'échantillons. Une fois le blanc réalisé ou l'échantillonnage terminé, les filtres et les mousses sont enveloppés dans du papier aluminium et stockés dans une gaine en plastique fermée hermétiquement, dans un congélateur à -20°C jusqu'à leur traitement en laboratoire.

II.1.b. Mesures en ligne

• Mesure de l'ozone

Au cours des différentes campagnes de prélèvements en extérieur, le suivi de la concentration en ozone a été effectué en continu. Ceci permet d'apporter une information supplémentaire concernant l'impact de sources à plus ou moins longue distance du prélèvement puisque cet oxydant est un polluant secondaire. Il est majoritairement formé lors de la dégradation dans l'atmosphère des composés organiques volatils (COV) en présence d'oxydes d'azote NOx et de lumière. Par exemple, sa présence sur le Bassin d'Arcachon marque, selon l'heure et les conditions météorologiques, la signature du transport de la pollution atmosphérique vers ce territoire, qu'elle soit d'origine naturelle ou anthropique.

L'analyseur « APOA-370 » (Horiba), avec lequel la concentration en ozone est mesurée par absorption UV à 253,65 nm, a été utilisé dans le cadre de ce travail. La concentration est déterminée par la différence d'adsorption entre l'échantillon introduit directement dans la cellule de mesure et l'échantillon passé sur un filtre à ozone (charbon actif) (Cf. Figure 6). De plus, une entrée supplémentaire (entrée étalon) permet d'étalonner l'appareil. Dans notre cas, un générateur interne (lampe à mercure) permet de faire cette calibration.

Figure 6 : Principe de fonctionnement de l'analyseur d'ozone APOA-370 (Horiba)

• Mesure des oxydes d'azote

Les oxydes d'azote NOx regroupant ici principalement le monoxyde d'azote (NO) et le dioxyde d'azote (NO₂) sont émis directement dans l'atmosphère lors de processus de combustion. La source principale de NOx est le trafic automobile, leur présence impliquant une origine locale de la pollution mesurée. Tout comme l'ozone, ces composés présentent une forte réactivité dans l'atmosphère et leur suivi au cours des campagnes de prélèvement permet d'apporter des informations complémentaires concernant les sources et l'impact de la réactivité de ces oxydants avec, entre autres, les HAP. Dans le cadre de ce travail, la mesure des concentrations en oxydes d'azote est effectuée à l'aide d'un analyseur « APNA-370 » (Horiba) (Cf. Figure 7). Le fonctionnement de cet analyseur repose sur la mesure par chimiluminescence du monoxyde d'azote et des oxydes d'azote totaux, la concentration en dioxyde d'azote étant obtenue par différence entre ces deux mesures.

Figure 7 : Principe de fonctionnement de l'analyseur d'oxydes d'azote APNA-370 (Horiba)

• Acquisition de données météorologiques

Dans le cadre des campagnes réalisées en extérieur, une station météorologique a permis d'assurer le suivi des conditions de prélèvements. L'ensemble des mesures était enregistré toutes les 15 minutes à l'aide d'un pluviomètre, d'un anémomètre, d'une girouette et d'un capteur de température/pression. Les résultats étaient transmis par ondes radio à la station de base.

II.1.c. Rétrotrajectoires de masse d'air

Afin de compléter les mesures météorologiques, le modèle HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) a été utilisé pour l'étude des rétrotrajectoires des masses d'air. Ce modèle a été créé dans le cadre d'une collaboration entre la US NOAA (National Oceanic and Atmospheric Administration) Air Ressources Laboratory et le « Australia's Bureau of Meteorology ». Il permet de calculer les trajectoires de parcelles d'air pour des simulations de dispersion ou de dépôt dans l'atmosphère et/ou leurs rétrotrajectoires pour vérifier l'origine et les sources de polluants. Dans notre cas, ce sont les rétrotrajectoires qui ont été calculées dans le but d'établir les origines probables des masses d'air prélevées sur le Bassin d'Arcachon et de déterminer l'influence des apports océaniques ou continentaux sur ce territoire. A partir de données météorologiques (pression, température...), la trajectoire parcourue par une masse d'air est simulée sur la période précédant son arrivée en un lieu et à un instant donné. Par exemple, dans notre cas, la durée de prélèvement des particules était de 24 heures. Six rétrotrajectoires par jour ont été calculées sur une durée totale de 48 heures (ex. Figure 8). Ainsi, les parcours des masses d'air échantillonnées toutes les 4 heures ont été modélisés et leurs origines ont pu être intégrées dans la discussion des résultats.

Figure 8 : Exemple de rétrotrajectoires atmosphériques pour les journées de prélèvements des 02 et 07 septembre 2010 (Site du sémaphore du Cap-Ferret)

II.2. Méthodologies analytiques

Les HAP particulaires et les HAP gazeux piégés sur les mousses ont été extraits par extraction sous fluide pressurisé (ASE) dans du dichlorométhane à 100°C et 100 Bars puis purifiés sur micro-colonnes d'alumine et de silice, afin d'éliminer toute trace d'interférent (Perraudin et *al.*, 2005). La méthode d'analyse des HAP (de 2 à 7 cycles aromatiques) et des HAP alkylés (dérivés notamment du naphtalène et du phénanthrène) utilise la technique de chromatographie en phase gazeuse couplée à la spectrométrie de masse (GC-MS) selon des protocoles déjà validés, résumés sur la Figure 9.

Figure 9 : Protocole analytique suivi pour les échantillons du projet HAP - SIBA/OSQUAR

II.2.a. Extraction accélérée par fluide pressurisé

Les extractions par fluide pressurisé réalisées dans ce travail ont été effectuées sur un appareil de type ASE[®] 350 (Dionex). Le principe de fonctionnement est présenté sur la Figure 10. Les cellules sont composées de trois parties : un corps central cylindrique et deux bouchons à visser aux extrémités du corps principal. Ces bouchons sont percés pour permettre le remplissage des cellules avec le solvant d'extraction et composées, entre autre, d'un fritté qui assure la filtration de l'échantillon.

Figure 10 : Principe de fonctionnement d'une extraction par fluide pressurisé

Après avoir placé un filtre en cellulose au fond de la cellule, la cellule est remplie à moitié de billes de verre (2,0 mm de diamètre). L'échantillon à extraire est introduit dans la cellule d'extraction dont le volume est adapté à la quantité de matrice et au traitement de l'échantillon. Le volume restant est complété avec des billes de verre afin de réduire le volume de solvant et de faciliter la dispersion du solvant et la condensation des vapeurs de solvant (voir le schéma de la cellule Figure 10). Les étalons internes sont éventuellement ajoutés dans la cellule ou dans le flacon de récupération selon les conditions. La quantité est mesurée par gravimétrie sur une balance de précision.

L'extraction se déroule ensuite en plusieurs étapes. Dans un premier temps, la cellule est introduite dans le four pour être préchauffée à la température choisie. Le solvant choisi est envoyé dans la cellule et la pression est stabilisée à la consigne. La vanne statique permet d'éviter toute surpression du système d'extraction. La phase suivante est l'extraction statique qui consiste à maintenir la pression et la température choisies pendant une durée déterminée (Cf. Tableau 3). A la fin de cette étape, une partie du solvant est renouvelée par du solvant propre dans la cellule, dans une proportion choisie par l'utilisateur, et la 1^{ère} fraction extraite est envoyée vers le flacon de récupération (flacon ambré). Cette phase peut être réalisée plusieurs fois selon la méthode. Finalement, le système est rincé avec du solvant et purgé avec de l'azote pour récupérer la totalité de l'extrait dans le flacon de récupération. Entre les extractions, une étape de rinçage au solvant permet de nettoyer l'ensemble du système et d'éviter toute contamination.

Appareil	ASE 350
Durée de préchauffage	5 min
Durée de chauffage	5 min
Durée de l'extraction statique	8 min
Renouvellement de solvant	60 %
Temps de purge	200 s
Nombre de cycles	2
Pression	100 bars
Température	100°C
Solvant	dichlorométhane
Volume de la cellule	22 mL

Tableau 3 : Conditions d'extraction par fluide pressurisé pour les échantillons de particules étudiés

Avant toute extraction, les différentes parties de la cellule sont nettoyées selon le protocole établi par le fabriquant. Les billes de verre sont lavées par trois extractions successives de 15 minutes aux ultrasons dans du dichlorométhane et pyrolysées à 450°C pendant 5 heures pour éliminer toute trace d'interférent. De plus, avant chaque extraction d'échantillon, les cellules contenant les billes de verre et le filtre en cellulose sont conditionnées, c'est-à-dire qu'une extraction est réalisée dans les mêmes conditions que celles des échantillons afin de les nettoyer.

II.2.b. Purification sur micro-colonnes

Avant les étapes de purification, les échantillons ont été reconcentrés dans environ 500 µL de dichlorométhane par un système d'évaporation automatique de type RapidVap. Le fonctionnement de cet appareil consiste à agiter les flacons, dans lesquels se trouvent les échantillons, par un mouvement circulaire, à température et pression choisies. Dans notre cas, le dichlorométhane est évaporé à une température de 51°C, à une pression fixée à 900 mbars et une agitation à 70% de sa puissance maximale, pendant une durée de 30 minutes. Le toluène a été évaporé à 80°C, 280 mbars et avec une agitation à 35% de sa puissance maximale. Ensuite, des étapes de purification sont nécessaires pour éliminer la plus grande quantité d'interférents qui pourraient empêcher une analyse correcte des HAP par GC-MS. Deux types de purification sur micro-colonnes ont été utilisés lors de ce travail. Dans le cas de matrices naturelles complexes, une purification sur micro-colonne d'alumine et de cuivre activé (40 mesh) a été effectuée en conditionnant la colonne avec 5 mL de dichlorométhane et en éluant les HAP dans trois fois 5 mL de dichlorométhane. Le but est ici d'éliminer les composés polaires, les macro-molécules et les pigments, retenus sur l'alumine, et le soufre des échantillons, piégé par le cuivre activé. Suite à cette étape, l'extrait est reconcentré sous flux d'azote à environ 40°C. Un changement de solvant est alors nécessaire pour effectuer la seconde purification et le dichlorométhane est remplacé par de l'isooctane. L'extrait reconcentré dans environ 100 µL d'isooctane peut alors être purifié sur une micro-colonne de silice (gel de silice, 0,063-0,200 mm). Cette colonne est conditionnée avec 5 mL de pentane et permet d'éliminer les alcanes en éluant une première fraction avec 2 mL de pentane. La seconde fraction, contenant les HAP, est éluée avec trois fois 5 mL d'un mélange pentane/dichlorométhane (65/35, v/v). L'extrait est ensuite reconcentré sous flux d'azote à 40°C dans environ 200 µL d'isooctane (solvant d'injection) et transféré dans un vial d'injection.

II.2.c. Analyse et quantification des HAP

Une multitude de méthodes d'analyses a été développée pour la quantification des HAP principalement à partir de techniques chromatographiques (Poster et al., 2006). Les méthodes réglementaires recommandées pour mesurer les HAP dans l'air ambiant sont principalement basées sur l'analyse par chromatographies en phase gazeuse couplée à la spectrométrie de masse (GC-MS, ISO12884, 2000) ou liquide couplée à une détection par fluorimétrie UV (HPLC-fluo, ISO 16362, 2005). Dans le cadre de ce projet, la quantification des HAP a été réalisée par GC-MS.

L'analyse par chromatographie en phase gazeuse couplée à la spectrométrie de masse permet de quantifier les HAP des échantillons après leur séparation chromatographique et leur ionisation, ici par impact électronique. Cette technique analytique a été largement utilisée et validée pour l'étude des HAP quelle que soit la matrice environnementale. Sur l'appareil utilisé, la colonne chromatographique est composée de 50% de groupements diphényle et de 50% de groupements diméthyle-polysiloxane de type Rxi-17 (Restek) et ses dimensions sont identiques à la colonne HP-5MS. Cette colonne permet de séparer des isomères qui ne l'étaient pas avec la colonne HP-5MS tels que les benzofluoranthènes, les dibenzoanthracènes et les dibenzopyrènes. Les conditions d'analyse sont présentées dans le Tableau 4.

		GC-MS
Fchantillons	analysés	Campagnes
Lenanciions		SIBA/OSQUAR
	Volume injecté	1 μL
	Température de l'injecteur	270°C
Injection	Mode d'injection	Splitless
	Débit de purge	60 mL/min
	Temps de purge	90 s
	Modèle	HP model 7683 (Agilent Tech.)
		60°C (2 min)
	Température du four	De 60°C à 320°C à 10°C/min
		320°C (25 min)
Séparation	Gaz vecteur	He (99,9996% pureté)
	Débit du gaz vecteur	1,3 mL/min
	Température de l'interface	290°C
	Nature de la colonne	Rxi-17
	Modèle	HP model Series 6890 (Agilent Tech.)
	Température de la source	230°C
	Tension du multiplicateur	1620 + 50 V
	d'électrons	1020 - 00 1
Détection	Energie d'ionisation	70 eV
	Temps d'intégration	30 ms
	Détecteur	Quadripôle
	Mode de détection	Sélection d'ions (SIM)
	Modèle	HP model 5973 (Agilent Tech.)

Tableau 4 : Conditions d'analyse des HAP par GC-MS

La quantification des HAP a été réalisée par étalonnage interne. Lors des différentes étapes de préparation des échantillons, des étalons ont été introduits par gravimétrie dans l'extrait. Les étalons dits « internes » ont été ajoutés avant les étapes d'extraction et les étalons dits « seringues » à la fin du protocole analytique, préalablement à l'analyse par GC-MS. Les quantités et les concentrations de ces solutions sont précisément connues et permettent de quantifier les HAP et de calculer les rendements d'extraction du protocole analytique. Le Tableau 5 résume l'ensemble des HAP étudiés lors de ce travail et les étalons internes et seringues utilisés pour leur quantification.

Cette méthode est basée sur l'utilisation des aires des pics chromatographiques. A chaque composé i, est associé un étalon interne e et à chaque étalon interne e est associé un étalon seringue s. Chacune des aires des pics chromatographiques A_i , A_e et A_s est associée à la masse de chaque composé m_i , m_e et m_s . Ayant ajouté les étalons par gravimétrie et connaissant les concentrations de ceux-ci dans les solutions, les masses m_e et m_s sont connues par simple multiplication (équation 1a et 1b).

$$m_e = m_e \times C_e$$
 $m_s = m_s \times C_s$ (Equations 1a et 1b)

où $\mathbf{m'_e}$ ($\mathbf{m'_s}$) est la masse d'étalon interne (seringue) ajoutée avant l'extraction et $\mathbf{C_e}$ ($\mathbf{C_s}$) la concentration de cet étalon interne (seringue) dans la solution.

La masse du composé i (m_i) est alors déterminée par la relation suivante :

$$m_i = K_i \times \frac{A_i}{A_r} \times m_e$$

où \mathbf{K}_{i} est le facteur de réponse du compose i par rapport à l'étalon interne \mathbf{e} .

HAP parents	Abréviations	Etalons internes	Etalons "seringue"
Naphtalène *	Naph	Naphtalène d8	Pyrène-d10
Acénaphtylène*	Acy	Phénanthrène d10	
Acénaphtène*	Ace		
Fluorène*	FI		
Phénanthrène *	Phen		
Anthracène*	Anth	Anthracène d10	
Dibenzothiophène*	DBT	Dibenzothiophène d8	
Fluoranthène *	Fluo	Fluoranthène d10	
Pyrène *	Pyr		
Benzo(ghi)fluoranthène	BghiF	Chrysène d12	
Benzo(c)phénanthrène	BcP		
Benz(a)anthracène *	BaA		
Chrysène + Triphénylène *	Chrys+Triph		
Cyclopenta(cd)pyrène	CcdP		
Benzo(b)fluoranthène *	BbF	Benzo(e)Pyrène d12	Benzo(b)fluoranthène d12
Benzo(k)fluoranthène *	BkF		
Benzo(j)fluoranthène *	BjF		
Benzo(a)fluoranthène *	BaF		
Benzo(e)pyrène *	BeP		
Benzo(a)pyrène *	BaP	Benzo(a)pyrène d12	
Pérylène *	Per	Benzo(e)Pyrène d12	
Dibenzo(ac)anthracène	DBacA	Benzo(ghi)pérylène d12	
Indéno(1,2,3,cd)pyrène *	IP		
Dibenzo(ah)anthracene*	DBahA		
Benzo(ghi)pérylène *	BghiP		
Anthanthrène	Antha		
Coronène	Cor	Coronène d12	
Dibenzo(bk)fluoranthène	DbkF		
Dibenzo(al)pyrène	DalP		
Dibenzo(ae)pyrène	DaeP		
Dibenzo(ah)pyrène	DahP		

Tableau 5 : Liste des HAP étudiés dans ce projet, associés à leurs étalons internes et « seringue »

Les facteurs de réponses Ki de chaque HAP par rapport à son étalon interne et Ke de l'étalon interne par rapport à son étalon seringue sont déterminés en injectant une solution d'étalonnage. Cette solution contient l'ensemble des HAP, des étalons internes et seringues à des concentrations connues. Les coefficients de réponse étant dépendant des conditions chromatographiques (température, état de l'appareillage...), cette solution est analysée avant et après chaque série d'échantillons (une vingtaine d'analyses maximum) pour actualiser les valeurs de ces coefficients et améliorer la justesse de la quantification. De la même façon, la masse d'étalon interne effectivement extraite (mext) peut être calculée en appliquant la même formule au couple étalon interne/étalon seringue (équation 2). On suppose que la masse d'étalon seringue m_s est constante puisque celui-ci est ajouté dans l'extrait juste avant l'analyse de l'échantillon. En comparant cette masse mext à celle initialement introduite au cours du protocole de préparation de l'échantillon (m_e), on peut déterminer un rendement d'extraction. Les étalons internes ayant été choisis de telle sorte que leur comportement au cours de la manipulation soit le plus proche possible de celui des HAP, on estime que le rendement d'extraction de l'étalon interne est équivalent à celui du HAP. Cette méthode de quantification permet donc une quantification précise et juste des composés extraits et une détermination des rendements de manipulation (extraction + purifications).

III. Sites d'échantillonnage

Dans le cadre de ce projet, sept lieux de prélèvements ont été choisis (Andernos-les-Bains, la pointe du Cap Ferret, le port d'Arcachon, Biganos, Le Cap-Ferret-Jane de Boy, Gujan-Mestras et Le Temple, cf. Figure 11) dans le but d'intégrer diverses origines locales de la pollution, d'étudier les impacts météorologiques (ensoleillement, pluviométrie, vents...) et les effets de saisonnalité sur les concentrations et les sources des HAP particulaires et gazeux.

Figure 11 : Carte des sites d'échantillonnage atmosphérique des HAP autour du Bassin d'Arcachon

La durée totale de l'échantillonnage s'est étalée comme prévu initialement sur 10 semaines de mesures. Chacun des sites choisis l'a été en fonction d'une spécificité :

- Les sites périurbain et urbain sont instrumentés l'hiver afin de permettre d'étudier les contributions croisées des sources véhiculaires et du chauffage au bois, et l'été, afin d'étudier les contributions véhiculaires, l'influence des oxydants et du transport des particules atmosphériques sur leur vieillissement. Les sites d'Andernos-les Bains (Lyonnaise des Eaux, campagnes du 10 au 19 février 2010 puis du 14 au 22 juillet 2010) et d'Arcachon (campagnes du 16 au 22 janvier 2012 et du 16 au 23 septembre 2011) ont été choisis dans ce but. Notons que le site d'Arcachon peut aussi permettre de montrer l'influence des activités maritimes car situé au milieu de l'activité portuaire sur le site de l'IFREMER.

- Le site situé sur la pointe du Cap Ferret (Sémaphore, campagnes du 31 aout au 09 septembre 2010 puis du 17 au 25 février 2011) présente la particularité d'être le plus proche de l'océan et permet d'étudier les éventuels apports océaniques en HAP indépendamment des sources locales et régionales.

- La source industrielle a aussi été étudiée dans ce projet, malgré sa faible contribution aux émissions totales des HAP en France (moins de 2%, source CITEPA). Les prélèvements ont été effectués (du 28 avril au 06 mai 2011) à proximité de l'usine de papeterie (Smurfit Kappa-Cellulose du Pin) de Biganos.

- Les sites de proximité automobile (sites routiers) sont instrumentés en période chaude et permettent d'obtenir la signature de la source véhiculaire. Sur les sites proches des sources, les réactions d'oxydation pouvant se dérouler pendant le transport atmosphérique sont considérées comme négligeables. De plus, en effectuant les prélèvements l'été, on s'affranchit de la contribution d'autres sources majoritaires des HAP, comme le chauffage urbain. Le site appelé Sud-Bassin (campagne du 08 au 14 juillet 2011) est situé au bord de l'A660 à Gujan Mestras, permettant de caractériser plus précisément les émissions véhiculaires provenant du trafic Bordeaux-Arcachon. Le site Nord-Bassin a été choisi le long de la route D106 au lieu-dit Jane de Boy entre Ares et Claouey pour évaluer les apports dus à la circulation Bordeaux-Le Cap-Ferret en été (campagne du 10 au 16 juillet 2012).

- Enfin, un site rural situé au Temple, a été choisi (campagne du 25 janvier au 01 février 2012) du fait de la présence du site de référence d'AIRAQ (réseau de surveillance de la qualité de l'air en Aquitaine) afin d'intégrer l'éventuelle contribution agricole (feu de biomasse) mais surtout de pouvoir obtenir des mesures en HAP atmosphériques loin de sources locales potentielles.

IV. Résultats

Le couplage de l'ensemble des données obtenues permet de proposer différentes sources pour les HAP mesurés. En effet, chaque polluant apporte une information concernant l'origine des masses d'air échantillonnées. L'ozone est un polluant secondaire, issu principalement de la réactivité de composés organiques volatils, en particulier lors de leur photodégradation en présence d'oxydes d'azote. Sa présence sur le Bassin d'Arcachon marque, selon l'heure et les conditions météorologiques, la signature du transport de la pollution atmosphérique vers ce territoire, qu'elle soit d'origine naturelle ou anthropique. Au contraire, les oxydes d'azote (regroupant ici principalement le monoxyde d'azote (NO) et le dioxyde d'azote (NO₂)) sont plutôt des margueurs d'une pollution locale, puisque leur source principale est aujourd'hui le trafic routier sur ce territoire. Tout comme l'ozone, ces composés présentent une forte réactivité dans l'atmosphère et leur suivi au cours des campagnes de prélèvement permet d'apporter des informations complémentaires concernant les sources et l'impact de la réactivité de ces oxydants avec, entre autres, les HAP. Ces derniers, issus de la combustion incomplète de la matière organique, apportent des informations sur les sources à travers la connaissance de margueurs, l'utilisation de profils moléculaires et/ou de rapports de concentrations caractéristiques, dont les valeurs de références sont rapportées dans la littérature. Enfin, pour compléter les informations acquises sur les sites, le modèle HYSPLIT de la NOAA a été utilisé afin de modéliser (sous la forme de rétrotrajectoires) le parcours des masses d'air avant leur prélèvement sur chaque site à partir de bases de données météorologiques, en complément de nos propres mesures.

		Site Pér Arca	iurbain chon	Site Péi Cap-I	riurbain Ferret	Site Pé And	riurbain ernos	Site industriel Usine Smurfit Biganos	Site trafic Nord Bassin Jane de Boy	Site trafic Sud Bassin Arcachon	Site rural Le Temple
		Eté 2011	Hiver 2012	Eté 2010	Hiver 2011	Eté 2010	Hiver 2010	Avril-Mai 2011	juil-12	juil-11	janv-12
Phase Gaz (PUF)	Min-Max	2,790-5,580	3,718-33,881	0,512-2,818	1,777-34,469	2,160-6,363	12,442-26,522	0,758-3,057	1,062-1,673	1,191-4,362	2,840-6,956
Σ 31 HAP (en ng/m3)	Moyenne	3,857	12,296	1,618	7,738	4,287	17,843	1,884	1,282	1,939	4,509
Phase Particulaire (Filtre)	Min-Max	0,101-1,687	0,176-14,339	0,044-0,502	0,134-16,808	0,269-0,850	4,664-13,028	0,096-0,745	0,052-0,435	0,150-0,850	1,036-12,163
Σ 32 HAP (en ng/m3)	Moyenne	0,747	3,927	0,200	2,783	0,440	7,780	0,312	0,247	0,371	3,214
Total HAP gazeux et	Min-Max	2,891-7,267	3,894-48,220	0,556-3,320	1,974-51,277	2,593-7,212	17,517-38,644	0,854-3,802	1,114-2,108	1,341-5,212	4,317-19,119
particulaires	Moyenne	4,604	16,223	1,818	10,521	4,717	25,623	2,196	1,529	2,310	7,723
Concentration B(a)P	Min-Max	0,004-0,114	0,010-1,255	Nd-0,030	0,008-1,257	0,001-0,059	0,172-1,059	0,003-0,041	0,001-0,011	0,004-0,038	0,080-0,713
particulaire (en ng/m3)	Moyenne	0,043	0,327	0,008	0,195	0,013	0,490	0,014	0,004	0,014	0,216
Concentration O3	Min-Max	10,7-121,1	0-92,7	22,5-151,5	9,6-124,9	3,8-131,1	0-85,9	0-99,4	2,2-110,1	4,2-170,6	4,0-82,0
(en µg/m3)	Moyenne	80,4	50,1	101,1	77,9	63,9	53,3	29,4	68,2	101,8	42,4
Concentration en NO2	Min-Max	0-57,2	0-129,1	0-38,4	0-27,9	0-53,4	4,5-64,9	0-66,5	0-43,6	0-80,5	0-24,5
(en µg/m3)	Moyenne	6,1	12,4	1,4	0,5	4,6	17,2	3,0	2,4	6,5	2,7
Tampératura (an %)	Min-Max	12,2-24,9	0,2-15,0	13,5-31,6	4,4-14,0	14,0-29,8	-3,7-11,9	9,2-25,3	12-22,8	8,9-30,8	-4,5-11,7
Temperature (en C)	moyenne	12,2	8,9	20,8	10,0	22,4	2,3	16,8	18,2	20,6	2,8
Vitesse du vent	Min-Max	0-42,4	0-13,6	0-25,9	0-11	0-14	0-16,5	0-15,4	0-10,7	0-20,1	0-17,6
(en km/h) et direction	Moyenne	8,5	2,5	1,9	3,8	2,7	2,2	2,6	0,6	3,5	2,2
principale du vent	Direction	NO	O/SO	O/SO	O/SO/E	O/N	NE	O/E	SO	O/ONO/N/ENE	N /NE

L'ensemble des concentrations en HAP mesurées dans ce projet est proposé en Annexe. Une courte synthèse des résultats est présentée dans le Tableau 6.

Tableau 6 : synthèse des résultats obtenus lors des 10 semaines de campagne de mesure de HAP atmosphériques

Autour du Bassin d'Arcachon, les mesures des concentrations en HAP particulaires et gazeux varient en moyenne, selon les sites et les saisons, de 1,5 à 25,5 ng/m³, ce qui est tout à fait similaire en concentration à d'autres sites de type majoritairement péri-urbains. Les HAP gazeux présentent comme attendu les plus fortes concentrations par rapport à celles en HAP particulaires. Un exemple de répartition gaz/particules mesurée sur le site d'Andernos en février est présenté sur la Figure 12 :

Figure 12 : Répartition des HAP sur les phases gazeuses et particulaires à Andernos lors de la campagne d'hiver

Notons que la concentration atmosphérique en benzo(a)pyrène (BaP), qui est aujourd'hui règlementée par décret (2010-1250 du 21 octobre 2010), avec une valeur cible maximale de 1 ng/m³ en moyenne annuelle du contenu total de la fraction PM10, ne varie ici qu'entre 0,04 et 0,5 ng/m³ (même si ces valeurs sont issues de seulement 10 semaines de mesure et ce à partir de prélèvements PM2,5 forcément moins importants car inclus dans les PM10). Le Conseil Supérieur d'Hygiène Publique de France recommande de son côté un objectif de qualité à atteindre de 0,1 ng/m³ de BaP atmosphérique en moyenne annuelle.

Les concentrations en HAP mesurées sur les trois sites étudiés en hiver et en été montrent clairement l'effet de saisonnalité avec des concentrations plus élevées l'hiver que l'été. Ceci provient de la différence de sources avec une forte contribution du chauffage résidentiel opposée à celle du trafic ainsi qu'à l'influence des processus physico-chimiques sur les HAP en été. En effet, la photochimie et l'oxydation par les polluants atmosphériques sont très marquées en période estivale et accentuent cette différence de concentrations.

Un mode de traitement des données de concentration est beaucoup utilisé pour la différenciation de sources particulaires: les rapports moléculaires. Cela consiste en la détermination de rapports de concentrations caractéristiques de sources données, malgré les processus physico-chimiques affectant la vie d'une particule atmosphérique. En effet, comme les profils peuvent ne pas être toujours conservés pour une même origine ou encore que des profils similaires pouvent être observés alors que les sources des sites choisis étaient à priori différentes. En revanche, malgré ces constatations, des rapports de concentrations peuvent être constants si les composés sont correctement choisis. En effet,

des HAP isomères ont des propriétés physico-chimiques très similaires et s'ils sont affectés de façon identique par les processus d'oxydation ou photochimique, leurs rapports moléculaires seront conservés au cours du transport et seront ainsi spécifiques de la source d'émission. Or, les rapports [phénanthrène]/[anthracène], [benz(a)anthracène]/[chrysène] ou [benzo(a)pyrène]/[benzo(e)pyrène] ne sont pas de bons candidats pour le traçage de sources car les réactivités de ces trois couples d'isomères sont très différentes. Au contraire, les rapports moléculaires [fluoranthène]/[pyrène] et [indéno(123-cd)pyrène]/[benzo(ghi)pérylène] sont intéressants du fait de la photo-stabilité de ces quatre HAP.

Si on se focalise plus particulièrement sur un site comme celui d'Andernos-les-Bains, des marqueurs de sources (cf. Tableau 7) montrent l'impact du chauffage au bois avec une forte contribution du chrysène en hiver alors qu'en été, ce sont les contributions du benzo(b)fluoranthène et du benzo(ghi)pérylène, traceurs de sources véhiculaires qui sont relevées (cf. Figure 13).

		Sources	d'émission	
Rapports de concentrations en HAP caractéristiques	Essence	Diesel	Bois	Chauffage résidentiel
[Fluo]/([Fluo]+[Pyr])	0,4-0,6 ^a			
[BaA]/[BaP]	0,5-0,7 ^b	0,9-1,7 ^b	1-1,5 ^b	
[BbF]/[BkF]	> 0,	5 ^c		
[BaP]/[BghiP]	0,5-0),6 ^c		> 1,25 ^d
[IP]/([IP]+(BghiP])		0,37 ^d	0,62 ^d	

^a Dallarosa et al. (2005), ^b Li et Kamens (1993), ^c Park et al. (2002), ^d Ravindra et al. (2008)

Tableau 7 : Rapports moléculaires caractéristiques des sources de HAP atmosphériques

On retiendra que le trafic reste présent en période hivernale mais que sa contribution est particulièrement importante l'été en raison du développement touristique du territoire. Ces résultats sont confirmés par les valeurs du rapport [IP]/([IP]+[BghiP]) qui varient de façon significative entre les deux saisons et dont les valeurs sont en bon accord avec les références. Cet effet de saisonnalité est moins marqué au Cap Ferret où ce rapport reste constant, marquant l'influence du trafic mais non celle du chauffage domestique. Ceci est probablement dû à des températures assez douces sur la période échantillonnée en hiver, aux différences de densités de population (assez faible au Cap Ferret par rapport à Andernos-les-Bains en hiver) et à l'influence océanique à la pointe du Cap Ferret. Notons que les autres rapports caractéristiques calculés pour ces échantillons ne permettent pas d'obtenir de conclusions claires quant à l'origine des HAP particulaires avec des rapports [fluo]/([fluo]+[pyr]) constants quel que soit le site ou un rapport [BaP]/[BghiP] variant de façon aléatoire entre les jours et les sites.

Figure 13 : Concentrations en HAP gazeux et particulaires mesurées le 16 février 2010 à Andernos

Toutefois, à partir des données météorologiques et de la modélisation des rétrotrajectoires (cf. Figure 14), il a été montré une influence potentielle de sources de l'intra-bassin en été à Andernos-les-Bains ou lorsque les vents sont Est/Nord-Est au Cap Ferret, avec des émissions pouvant être liées aux activités maritimes. Au contraire, les masses d'air arrivant à Andernos-les-Bains l'hiver proviennent de l'agglomération bordelaise et contribuent à l'augmentation des concentrations en HAP sur ce site. Le Cap Ferret est quant à lui caractérisé par l'influence de l'océan Atlantique avec des vents dominants venant de l'Ouest. Toutefois, au regard des concentrations en HAP qui sont du même ordre de grandeur que celles des autres sites, ces masses d'air n'apportent pas de HAP particulaires de façon significative sur ce site.

Figure 14 : Exemple de rétrotrajectoires atmosphériques calculées à partir des données météorologiques (NOAA HYSPLIT) montrant les différentes provenances possibles des masses d'air sur le Bassin d'Arcachon

Concernant le site de Biganos (site de proximité industriel), il s'avère que les concentrations en HAP particulaires sont proches de celles des autres sites. Cette source industrielle n'est donc pas à l'origine de la présence de ces composés, via l'atmosphère, dans le Bassin d'Arcachon. En effet, au regard des conditions météorologiques et des contributions des marqueurs d'émissions véhiculaires (BbF, BeP et BghiP), il semble que la source principale soit ici aussi le trafic automobile et que l'activité industrielle de traitement du pin n'entraîne pas d'augmentation locale des concentrations en HAP atmosphérique.

V. Conclusion

L'objectif principal de cette étude était d'évaluer les possibles apports atmosphériques à la contamination en HAP des eaux du Bassin d'Arcachon. Pour cela, dix semaines de campagne de mesure ont été effectuées sur 7 sites différents, caractéristiques des sources attendues de HAP, mesurant ainsi en continu leurs concentrations (gazeuses et particulaires), ainsi que celles en ozone et en oxydes d'azote, permettant de compléter l'évaluation des sources atmosphériques. Le programme proposé a été réalisé en tout point, permettant d'obtenir pour la première fois une cartographie des concentrations atmosphériques en HAP autour du Bassin d'Arcachon. Les concentrations mesurées sont comprises en moyenne entre 1,5 à 25,5 ng/m³, ce qui reste similaire à celles mesurées globalement sur des sites de type périurbain.

Sur la base des mesures des concentrations atmosphériques en HAP, il est possible de faire une estimation du dépôt atmosphérique de ces composés sur le Bassin d'Arcachon. Pour cette estimation, deux méthodologies ont été utilisées pour le calcul des flux de dépôt moyen pendant chacune des 10 semaines de mesure réalisées :

- Dans la première méthode, le flux de dépôt sec est d'abord estimé à partir du dépôt sec particulaire, en négligeant le dépôt sec gazeux, et de la vitesse de dépôt des particules, considérée égale à 0,2 cm.s⁻¹ ou 173 m.jour⁻¹ (Slinn et Slinn, 1980 ; Giorgi, 1986 ; Bildeman, 1988 ; Lin et al., 1994). Le flux de dépôt total est ensuite déduit du flux de dépôt sec, en utilisant un rapport entre dépôt sec et dépôt total de 40%, pris comme valeur intermédiaire de celles trouvées dans la littérature variant entre 25% au Havre (Motelay-Massei, 2003), 30% au lac Balaton (Kiss et al., 1997) et 60 à 75% à Chesapeake Bay (Leister et Baker, 1994 ; Golomb et al., 1997 ; Dickhut et Gustafson, 1995).

- Dans la deuxième méthodologie, le flux de dépôt est estimé à partir des concentrations atmosphériques totales en HAP et de deux valeurs de vitesse globale de dépôt issues de l'étude réalisée par Motelay-Massei (2003) en France sur le bassin versant du Bébec (milieu rural) et sur le bassin versant du plateau nord du Havre (milieu urbain et industriel) (Motelay-Massei, 2003).

		Flux de dépôt en ng.m ⁻² .j ⁻¹	Flux de dépôt en g.km ⁻² .an ⁻¹	Dépôt en kg.an ⁻¹
Flux de dépôt total en n (méthode 1)	g.m ⁻² .j ⁻¹	850	300	50
Flux de dépôt total en ng.m ⁻² .j ⁻¹ (méthode 2)	Vitesse de dépôt total en milieu rural = 20 m.j ⁻¹	150	60	10
	Vitesse de dépôt total en milieu urbain et industriel = 40 m.j ⁻¹	300	100	20

Tableau 8 : Estimation du flux de dépôt atmosphérique total et du dépôt atmosphérique total enHAP sur le Bassin d'Arcachon

Les résultats sont présentés dans le Tableau 8. Les écarts entre les 3 valeurs déterminées illustrent l'incertitude importante et inhérente à l'évaluation du flux de dépôt, en raison des estimations nécessairement faites pour ce calcul.

Les valeurs de flux de dépôt déterminées dans ce projet sont néanmoins comparables aux valeurs mesurées dans le bassin de la Seine : 40 g.km⁻².an⁻¹ pour le bassin versant du Bébec et 210 g.km⁻².an⁻¹ pour le bassin versant du plateau nord du Havre (Motelay-Massei, 2003). Le flux de dépôt moyen permet finalement de déterminer l'ordre de grandeur du dépôt total annuel en HAP sur le Bassin d'Arcachon pour une année (surface du Bassin = 155 km²) : 10 à 50 kg pour une année, ce qui représente entre 12 et 70 g pour 12 h (durée d'une marée). A partir de cette estimation, il peut être possible de calculer la part de la concentration en HAP dans l'eau du Bassin, due aux apports atmosphériques. Mais pour cela, il sera nécessaire de préalablement connaitre les différents flux entrants et sortants affectant cette part atmosphérique tels que le renouvellement de l'eau du Bassin, la volatilisation et le partage eau-sédiment.

VI. Valorisation

VI.1. Etudiants impliqués dans le projet :

- Thèses :

Geoffroy DUPORTE (Chimie Analytique et Environnement) : 2011-2014 - « Formation et devenir de l'aérosol organique secondaire : étude des réactions de formation d'oligomères et de sulfates organiques à l'interface gaz-particule» - Financement Université Bordeaux1 – Conseil Régional d'Aquitaine.

Matthieu RIVA (Chimie Physique) : 2010-2013 - « Caractérisation d'une nouvelle voie de formation des aérosols organiques (AOS) dans l'atmosphère : rôle des précurseurs polyaromatiques » - Financement ADEME. Soutenance prévue en décembre 2013.

Amélie GUILLON (Chimie Analytique et Environnement) : 2008-2011 - « Etude de la composition isotopique moléculaire (δ^{13} C) comme traceur de source qualitatif et quantitatif des Hydrocarbures Aromatiques Polycycliques particulaires dans l'atmosphère. - Financement BDI CNRS – Région Aquitaine. Soutenue le 16 décembre 2011.

- Masters :

Geoffroy DUPORTE (Master Chimie, spécialité Qualenc, 2010-2011) : « Caractérisation des apports atmosphériques en HAP à la pollution aquatique du Bassin d'Arcachon. »

Matthieu RIVA (Master Chimie, spécialité Qualenc, 2009-2010) : « Etude des sources des hydrocarbures aromatiques polycycliques dans l'atmosphère. »

VI.2. Publications et communications relatives au projet:

- Publications :

Seasonal variation, sources, gas/particle partitioning and atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Arcachon's Bay, France. G. Duporté, A. Guillon, M. Riva, P.-M. Flaud, L. Peluhet, K. Le Menach, E. Perraudin, A. Thévand, S. Jeandenand, H. Budzinski, E. Villenave. Article en préparation.

Thèse de doctorat d'Amélie Guillon : « Etude de la composition isotopique moléculaire (δ^{13} C) comme traceur de source qualitatif et quantitatif des Hydrocarbures Aromatiques Polycycliques particulaires dans l'atmosphère ». Université Bordeaux 1 (2011).

Rapport de Master de Geoffroy DUPORTE : « Caractérisation des apports atmosphériques en HAP à la pollution aquatique du Bassin d'Arcachon. Université Bordeaux 1 (2011).

Rapport final du programme OSQUAR financé par le Conseil Régional d'Aquitaine (2013).

- Communications orales :

Villenave E. Atmospheric Chemistry of Polycyclic Aromatic Hydrocarbons (PAHs) (Invited Lecture) *SESAC Summer School, Shanghaï, Chine, 18-27 mai 2013.*

Villenave E. Les Hydrocarbures Aromatiques Polycycliques (HAP) dans l'atmosphère: Sources, caractérisation et toxicité (Conférence Plénière invitée). 1° colloque francophone sur les polluants organiques générés par l'agriculture et les transports, Agadir, Maroc, 25-27 octobre 2011.

Villenave E., Budzinski H. Recent developments on atmospheric chemistry of PAHs. (Plenary Lecture) 22th ISPAC meeting, Charleston, USA, 20-24 septembre 2009.

VII. Références bibliographiques

Bidleman TF, McConnell LL, (1995). A review of field experiments to determine air-water gas exchange of persistent organic pollutants. The Science of Total Environment, 159, 101-117.

Dallarosa J.B., Teixeira E.C., Pires M., Fachel J. (2005). Study of the profile of polycyclic aromatic hydrocarbons in atmospheric particles (PM10) using multivariate methods. Atmospheric Environment, 39, 6587-6596.

Dickhut RM, Gustafson KE, (1995). Atmospheric inputs of selected Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls to Southern Chesapeake Bay. Marine Pollution Bulletin, 30, 385-396.

Fernandez P., Grimalt J., Vilanosa R. (2002). Atmospheric gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountains regions of Europe. Environmental Science and Technology, 36, 1162-1168.

Di Filippo P, Riccardi C, Pomata D, Gariazzo C, Buiarelli F. (2010). Seasonal Abundance of Particle-Phase Organic Pollutants in an Urban/Industrial Atmosphere. Water Air Soil Pollution, 211, 231-250.

Fang GC, Wu YS, Chen MH, Ho TT, Huang SH, Rau JH. (2004). Polycyclic aromatic hydrocarbons study in Taichung, Taiwan, during 2002–2003. Atmospheric Environment, 38, 3385-3391.

Giorigi FJ, (1986). A particle dry-deposition parametrization scheme for use in tracer transport models. Journal of Geophysical Research, 91, 9794-9806.

Golomb A, (1997). Atmospheric deposition of toxics onto Massachusetts Bay – II. Polycyclic Aromatic Hydrocarbons. Atmospheric Environment, 31, 1361-1368.

Guo H., Lee S.C., Ho K.F., Wang X.M., Zou S.C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment 37, 5307-5317.

Horvath, H. (2008). Conference on visibility, aerosols, and atmospherics optics, Vienna, September 3-6, 2006. Atmospheric Environment , 42, 2569-2570.

Kiss G, Gelencser A, Krivacsy Z, Hlavay J, (1997). Occurrence and determination of organic pollutants in aerosol, precipitation and sediment samples collected at Lake Balaton. Journal of Chromatography A, 774, 349-361.

Laj, P., Selligri, K. (2003). Les aérosols atmosphériques: impacts locaux, effets globaux. Revue Française des Laboratoires, 34, 23-34.

Leister DL, Baker JE, (1994). Atmospheric deposition of organic contaminants to the Chesapeake Bay. Atmospheric Environment, 28, 1499-1520.

Li C.K., Kamens R.M. (1993). The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmospheric Environment - Part A General Topics, 27, 523-532.

Lin JJ, Noll KE, Holsen TM, (1994). Dry deposition velocities as function of particle size in the ambient atmosphere. Aerosol Science and Technology, 20, 239-252.

Okona-Mensah K B, Battershill J, Boobis A, Fielder R. (2005). An approach to investigating the importance of high potency polycyclic aromatic hydrocarbons (PAHs) in the induction of lung cancer by air pollution. Food and Chemical Toxicology, 43, 1103-1116.

Martins, L., Martins, J. A., Freitas, E. D., Mazzoli, C. R., Gonçalves, F. L., Ynoue, R. Y., et al. (n.d.). (2010). Potential health impact of ultrafine particles under clean and polluted urban atmospheric conditions: a model-based study.

Masih A., Saini R., Singhvi R. (2010). Concentrations, sources and exposure profiles of polycyclic aromatic hydrocarbons (PAHs) in particulate matter in the north central part of India. Environmental Monitoring and Assessment, 163, 421-431.

Motelay-Massei A, (2003). Contribution du compartiment atmosphérique au transfert des HAP dans le bassin versant aval de la Seine : bilan à l'échelle de deux bassins versants expérimentaux, Thèse de doctorat, Université Paris VI Pierre et Marie Curie.

Motelay-Massei A., Garban B., Tiphagne-Larcher K., Chevreuil M., Ollivon D. (2006). Mass balance for polycyclic aromatic hydrocarbons in the urban watershed of Le Havre (France) : Transport and fate of PAHs from the atmosphere to the outlet ». Water Research, 10, 1995-2006.

Murr, L. E., Garza, K. M. (2009). Natural and anthropogenic environmental nanoparticulates: Their microstructural characterization and respiratory health implications. Atmospheric Environment, 2683-2692.

Park S.S., Kim Y.J., Kang C.H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36, 2917-2924.

Perraudin E., Budzinski H., Villenave E. (2005). Analysis of polycyclic aromatic hydrocarbons adsorbed on particles of atmospheric interest using pressurised fluid extraction. Analytical and Bioanalytical Chemistry, 383, 122–131.

Pöschl, U. (2005). Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Atmospheric Chemistry, 44, pp. 7520-7540.

Poster D.L., Schantz M.M., Sander L.C., Wise S.A. (2006). Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples : a critical review of gas chromatographic (GC) methods. Analytical and Bioanalytical Chemistry, 386, 859-881.

Ravindra K., Sokhi R., Van Grieken R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895-2921.

Rehwagen M., Muller A., Massolo L., Herbarth O., Ronco A. (2005). Polycyclic aromatic hydrocarbons associated with particles in ambient air from urban and industrial areas. Science of the Total Environment, 348, 199-210.

Renoux, A. B. (1998). Les aérosols : physique et métrologie. Lavoisier TEC & DOC.

Slinn SA, Slinn WGN, (1980). Predictions for particle deposition on natural waters. Atmospheric Environment, 14, 1013-1016.

Strawa, A. W., Kirchstetter, T. W., Hallar, A. G., Ban-Weiss, G. A., McLaughlin, J. P., Harley, R. A., et al. (2010). Optical and physical properties of primary on-road vehicle particle emissions and their implications for climate change. Journal of Aerosol Science , 41, 36-50.

Vasilakos C, Levia N, Maggosa T, Hatzianestis J, Michopoulos J, Helmis C (2007). Gas–particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece. Journal of Hazardous Materials, 140, 45–51.

VIII. Annexe

Sont présentées en annexe l'ensemble des mesures de concentration en HAP (gazeux et particulaires) obtenus dans le cadre de ce projet, par jour de campagne.

Andernos Site péri-urbain

14 juillet 2010-20 juillet 2010

<u>14 juillet 2010 :</u>

										Н	AP	gaz	eu	x									
(,	0,060	T																					
m/g(0.050																						
(en r	0.040																						
ΗAF	0,040																						
on	0,030	-				_							1		_								
ILLIAL	0,020	+				┢		1	•				F						-	┢			
ē										_													
Ë	0,010	+		H		t		T	H		П				H					F	t		
CONC	0,010						 											-				0-0	Ļ
Conc	0,010 0,000	Naph	Acy	Ace	I.	Phe	DBT	Fluo	Pyr Babic	Bcp	BaA + triph	oPcdP Bhc	BkF	BjF BaF	BeP	BaP	. ●	DahA	DacA	hrène	onène	DbkF	DahP
Conc	0,010	Naph	Acy	Ace	-B	Phe	DBT	Fluo	Pyr Bakic	Bcp	BaA Chrys + triph	cycloPcdP Bhc	BkF	BjF	BeP	BaP	- -	DahA_	BD BD	nthanthrène	Coronène	DbkF DaeP	DahP
Conc	0,010	Naph	Acy	Ace	- P	Phe	DBT	Fluo	Pyr Bahic	BcP	BaA Chrys + triph	cycloPcdP	BKF B	BjF	BeP	Bap	- -	DahA	DacA	Anthanthrène	Coronène	DaeP	DahP
Conc	0,010	Naph	Acy	Ace	-B	Phe	DBT	Fluo	Pyr Bachie	BcP	BaA Chrys + triph	cycloPcdP	RF 1	BjF	Bep	Bap	2 d	DahA		Anthanthrène	Coronène	DbkF DaeP	DahP
	0,010	Naph	Acy	Ace	- H	Phe		Fluo	Pyr Phir	BcP	BaA Chrys + triph	cycloPcdP	k, k	Bjf	Bep	Bap	<u> </u>	DahA		Anthanthrène	Coronène	Dokf DaeP	DahP
	0,010 0,000 0,800	Naph	Acy	Ace	- In	Phe	DBT	Fluo	Pyr	BcP	BaA Chrys + triph	cycloPcdP	RF -	BjF	Bep	Bap		DahA		Anthanthrène	Coronène	DbkF DaeP	DahP
conc	0,010 0,000 0,800 0,700		Acy	Ace	nE	Phe		Fluo	Pyr		BaA Chrys + triph	cycloPcdP	RkF	BF	Beb	Bab		DahA		Anthanthrène	Coronène	DbkF Dae P	Dahp
rP (en ng/m ²) Conc	0,010 0,000 0,800 0,700 0,600		Acv	Ace		Phe		Huo	Pyr		BaA Chrys + triph	cycloPcdP	SKF -	BjF	Beb	Bab		DahA		Anthanthrène	Coronène	Daep	Dahp
HAP (en ng/m ²)	0,010 0,000 0,800 0,700 0,600 0,500	Naph 1	Acy	Ace		Phe		Lluo	Pyr		BaA Chrys + triph	cycloPcdP		Bif	d and a second	Bab		DahA		Anthanthrène	Coronène	Dakf	Dahp
ion HAP (en ng/m ²)	0,010 0,000 0,800 0,700 0,600 0,500 0,400		Acv	Ace		- He			Pyr		BaA Chrys+triph	cycloPcdP	BKF	BjF	Bep	Bap		DahA		Anthanthrène	Coronène	Dakf	DahP
tration HAP (en ng/m ²) Conc	0,010 0,000 0,800 0,700 0,600 0,500 0,400 0,300		Acy	Ace		Phe		Like	Pyr		BaA Chrys+triph	cycloPcdP			Beb	Bap		DahA		Anthanthrène	Coronène	DbkF	DahP
centration HAP (en ng/m ²)	0,010 0,000 0,800 0,700 0,600 0,500 0,500 0,400 0,300 0,200		Acv	Ace		Phe		LINO	Pyr		BaA Chrys+triph	cycloPcdP		Bir	Beb	Bab		Dath		Anthanthrène	Coronène	Date	Dahp
concentration HAP (en ng/m ²)	0,010 0,000 0,800 0,700 0,600 0,500 0,400 0,300 0,200 0,100		Acv	Ace		L					BaA Chrys + triph	cycloPedP			Bep			DahA		Anthanthrène	Coronène	Dar P	Dahp

Andernos Site Péri-urbain Eté 2010 14 juillet 2010

	J1 14/0 (en ng	7/2010 g/m³)
	HAP particulaires	HAP gazeux
Naph	0,033	-
Асу	0,005	0,022
Biph	0,015	0,028
Ace	0,058	0,014
Flu	0,008	0,092
Phe	0,023	0,775
An	0,004	0,061
DBT	Nd	0,034
Fluo	0,021	0,545
Pyr	0,017	0,472
BghiF	0,012	0,037
BcP	0,004	0,022
BaA	0,018	0,004
Chrys + triph	0,048	0,028
cycloPcdP	0,011	0,013
BbF	0,029	Nd
BkF	0,008	Nd
BjF	0,007	0,001
BaF	0,023	Nd
BeP	0,022	Nd
BaP	0,009	Nd
Per	0,002	Nd
IP	0,014	Nd
DahA	Nd	Nd
DacA	Nd	Nd
BP	0,024	Nd
Anthanthrène	Nd	Nd
Coronène	0,014	0,010
DbkF	0,002	Nd
DaeP	0,002	Nd
DahP	Nd	Nd
DalP	0,003	Nd
Somme	0,433	2,159

15 juillet 2010 :

	J2 15/0 (en na	7/2010 g/m ³)
	HAP particulaires	HAP gazeux
Naph	0,014	-
Асу	0,005	0,025
Biph	0,008	0,043
Ace	0,025	0,033
Flu	0,006	0,201
Phe	0,040	3,267
An	0,011	0,326
DBT	0,012	0,113
Fluo	0,030	1,277
Pyr	0,029	0,799
BghiF	0,010	0,056
BcP	0,004	0,029
BaA	0,019	0,032
Chrys + triph	0,038	0,102
cycloPcdP	0,009	0,047
BbF	0,098	0,001
BkF	0,045	Nd
BjF	0,048	Nd
BaF	0,017	Nd
BeP	0,090	0,001
BaP	0,059	Nd
Per	0,009	Nd
IP	0,059	Nd
DahA	0,005	Nd
DacA	0,008	Nd
BP	0,085	Nd
Anthanthrène	0,005	Nd
Coronène	0,030	0,009
DbkF	0,007	Nd
DaeP	0,010	Nd
DahP	Nd	Nd
DalP	0,013	Nd
Somme	0,850	6,363

Andernos Site Péri-urbain Eté 2010 15 juillet 2010

<u>16 juillet 2010 :</u>

										<u>1(</u>	5 j	jui		et	2	20) <u>1</u> (0													
											F	IAI	P k	bai	rti	cι	ıla	ir	es												
											ł	A	Ρį	ga	ze	w	(
~	0,060	ſ												1																	
g/m	0,050	ł											-	F																	-
P (en n	0,040	ŀ											_	ŀ												-		_			-
on HA	0,030	ł							1	Π	1		_	\vdash		-										-		\vdash			-
entratic	0,020		\vdash										_		_	┝			-	┣			┝		-		-	-			_
Conce	0,010	ł	╞							ł	ł		ŀ	H	H			┝		╞			┝					╞			-
	0,000		ر د	- Ho	e .	<u>-</u>	A P	ET -	<u>م</u>	<u>۲</u>	5		۲ ۲	- -							e.	-		- Ao	H G	ne _	- e	بر ۳	eP	4	Ŧ
		Nar	A	Bi	Δ.	- (<u>م</u>	Δ	Ē	Δ.	Bg		0	rurys z uni		ם כ		, α	0.00	6	•		Dal	Da		thanthrè	Coronè	ЧD	Da	Dal	
																										An					
	2,500	ſ				_																									
n ng/m	2,000	ł																													-
HAP (e	1,500	$\left \right $																													-
itration	1,000	$\left \right $							1																						-
Concer	0,500							-	\mathbf{H}	┝																					-
	0,000		2 F	e,	_	e e	5 5				e,	Ā	ę	4	ц Ч	ц,	jF 	Ч,	- -	- -	ŗ	<u> </u>	۲ ۲	۲ ۲	đ	e -	e	Н, I	- -	<u>م</u>	-
		~	e iB	Ac	Ξ	Ч	A C	5 -	4	Bgh	Bc	Ba	ys + trip	sycloPcc	98	Ř	8	Ba	Be	Ba	ď	-	Dah	Dac	ß	anthrèn	Coronèn	Dbk	Dae	Dah	,

	J3 16/07 (en ng	7/2010 ;/m³)
_	HAP particulaires	HAP gazeux
Naph	0,021	-
Асу	Nd	0,053
Biph	Nd	0,022
Ace	Nd	0,017
Flu	Nd	0,145
Phe	0,015	2,270
An	0,007	0,119
DBT	0,012	0,115
Fluo	0,030	1,009
Pyr	0,028	0,656
BghiF	0,028	0,032
BcP	0,004	0,016
BaA	0,012	0,003
Chrys + triph	0,057	0,022
cycloPcdP	0,012	0,010
BbF	0,027	Nd
BkF	0,010	Nd
BjF	0,014	0,001
BaF	0,001	Nd
BeP	0,024	Nd
BaP	0,002	Nd
Per	Nd	Nd
IP	0,023	Nd
DahA	0,001	Nd
DacA	0,002	Nd
BP	0,047	Nd
Anthanthrène	Nd	Nd
Coronène	0,035	0,009
DbkF	0,001	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,415	4,500

<u>17 juillet 2010 :</u>

									<u>1</u> I	L7 HA	jı P	li pa	l le rt	et icu	2(ıla)1 ire	0 s											
										HÆ	٩P	ga	ΙZE	eu)	¢													
0,06	0 _																											-
ີ ແມ່ 0,05	o -																											-
ສິ ມີ ຍຸດ,04	0											_																-
HAP 0.03	o -										_	L																_
ation																_												_
centra	0				1			1	Π								1							_				
6 0,01	0 -				Ī	1	I	I	ľ	_	1	Ī	ī		1	T	E		I			ľ		F				
	Ż						-		8		+ T strat	cvcloF															-	
																			_		_							
1,8 	300 - 500 -																											
u/8u	400 -				ŀ																							
ы 1,2 Д	200 -				ŀ																							_
4 1,0)00 - 200 -																											
Ξ U,8	500 J																											
9.0 Jati									\vdash																			
entrati 6,0 di	100 /																											
9,0 0,4 0,2	400 - 200 -																											
9,0 4,0 Concentrati 2,0 Concentrati	400 200 200	cy 📕	e	2				^r		ط	۲.	Ч Ч	8	Ц	Ļ.	L U	. <u>a</u>	 -	Ŀ	4	P P	– 4:	ap L	hr	e	<u>т</u>	<u>م</u>	-

	J4 17/07/201	0 (en ng/m ³)
	HAP particulaires	HAP gazeux
Naph	0,050	-
Асу	Nd	0,022
Biph	Nd	0,027
Ace	Nd	0,017
Flu	Nd	0,133
Phe	0,016	1,640
An	0,009	0,100
DBT	Nd	0,072
Fluo	0,020	0,889
Pyr	0,016	0,506
BghiF	0,015	0,020
ВсР	0,003	0,011
BaA	0,008	0,002
Chrys + triph	0,040	0,012
cycloPcdP	0,009	0,006
BbF	0,017	Nd
BkF	0,005	Nd
BjF	0,007	Nd
BaF	0,020	Nd
BeP	0,018	Nd
BaP	0,001	Nd
Per	0,001	Nd
IP	0,014	Nd
DahA	0,001	Nd
DacA	0,002	Nd
ВР	0,021	Nd
Anthanthrène	Nd	Nd
Coronène	0,012	0,006
DbkF	0,001	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,307	3,464

											ŀ	IAF	o pa	arti	icul	lai	res									
											ł	IAI	Pga	aze	ux											
	0,060 -	ſ																				•				
lg/m³)	0,050 -	\vdash												1						1						
P (en n	0,040	\vdash												ł			1		-	┝		╞				
on HA	0,030 -													ł			ł			⊢		┢				
entrati	0,020 -									1		_	ŀ	ł		-	ł			⊢		┢		┝		
onc	0,010								H	h	—		┢	t	Н	╞	ł		-	┝		ŀ		┝		
0						_												_								
U	0,000 -	Naph	Acy	Ace	Flu	Phe	An	DBT	Fluo	BehiF	BcP	BaA trick	cycloPcdP	BbF	BiF	BaF	BeP	BaP		DahA	DacA	BP sotthràne	Coronène	DbkF	DaeP	DahP
0	0,000 -	Naph	Acy	- opt	Flu	Phe	An	DBT	Fluo	BehiF	BCD	BaA Change 4 trink	cycloPcdP	BbF	Bif	BaF	BeP	BaP		DahA	DacA	BP Anthanthrène	Coronène	DbkF	DaeP	DahP
0	2,000	Naph	Acy			Phe	An	0BT -	Fluo	BehiF	BCP	BaA Character Heinsch	cycloPcdP	BbF	BKF	BaF	Bep	Bap		DahA	DacA	BP Anthrother Anthrother	Coronène	DbkF	DaeP	DahP
(/m³) C	0,000 - 2,000 - 1,800 -	Naph	Acy		Flu	Phe	An	DBT	Fluo	Ryr Behif		BaA	cycloPcdP	86	RKF B	BaF	ц С С С С С С С С С С С С С С С С С С С			DahA	DacA	BP BP	Coronène	DbkF	DaeP	DahP
n ng/m³) C	2,000 - 1,800 - 1,600 -	Naph	Acy			Phe	An		- Huo	BehiF		BaA	cycloPcdP	BbF		BaF				DahA	DacA	80 81 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		DbkF	DaeP	Dahp
.P (en ng/m ³)	2,000 - 1,800 - 1,400 - 1,200 -	Naph	Acy			Phe	An					BaA Character + + + + + + + + + + + + + + + + + + +	curys + cupu	BbF		BaF	Be D			DahA	DacA		Coronène	DbkF	Dae	DahP
HAP (en ng/m ³)	2,000 - 1,800 - 1,600 - 1,400 - 1,200 - 1,000 -	Naph	Acy		Flu	Phe	An		Flue -	Rehif		BaA	cycloPcdP			BaF	Ben			DahA	DacA			DbkF	Dae	DahP
ion HAP (en ng/m ³)	2,000 - 1,800 - 1,400 - 1,200 - 1,000 - 0,800 -	Naph	Acy			Phe	- And					BaA	cycloPcdP			BaF				DahA	DacA			DbkF	Daep	DahP
tration HAP (en ng/m ³)	2,000 - 1,800 - 1,400 - 1,200 - 1,200 - 0,800 - 0,600 -	haph (Acy			Phe						BaA	cycloPcdP			BaF				DahA	Dacy			DbkF	DaeP	DahP
centration HAP (en ng/m ³)	2,000 - 1,800 - 1,600 - 1,400 - 1,000 - 0,800 - 0,600 - 0,400 -	Naph	Acy			Phe	ur vr			Sehie		BaA	cycloPcdP			BaF					Dack			DbkF	DaeP	DahP
Concentration HAP (en ng/m ³)	2,000 - 1,800 - 1,600 - 1,400 - 1,200 - 0,800 - 0,800 - 0,600 - 0,400 - 0,200 -	Naph	Acy			Phe						BaA				BaF					Dack			DbkF	Daeb	DahP
Concentration HAP (en ng/m ³)	2,000 - 1,800 - 1,600 - 1,400 - 1,200 - 0,800 - 0,600 - 0,600 - 0,400 - 0,200 -	Naph	Acy			Phe							curys + cupu								DacA			Obkr	Daeb	DahP

	J5 18/0 (en ng	7/2010 ;/m³)
	HAP particulaires	HAP gazeux
Naph	0,034	-
Асу	Nd	0,018
Biph	Nd	0,046
Ace	Nd	0,020
Flu	Nd	0,211
Phe	0,013	1,822
An	0,008	0,096
DBT	Nd	0,097
Fluo	0,020	1,611
Pyr	0,020	0,926
BghiF	0,010	0,087
BcP	0,002	0,038
BaA	0,005	0,010
Chrys + triph	0,031	0,116
cycloPcdP	0,006	0,052
BbF	0,051	0,006
BkF	0,016	Nd
BjF	0,024	0,002
BaF	Nd	Nd
BeP	0,038	0,002
BaP	0,002	Nd
Per	Nd	Nd
IP	0,050	Nd
DahA	0,003	Nd
DacA	0,004	Nd
BP	0,058	Nd
Anthanthrène	Nd	Nd
Coronène	0,031	0,006
DbkF	0,003	Nd
DaeP	0,001	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,429	5,291

<u> 19 juillet 2010 :</u>

											<u>19</u>	<u>ј</u> н	u Al	ill P P	<u>e</u> i pa ga	<u>t 2</u> rti ze	20 icu) <u>1</u> ıla «	<u>0</u> iire	es									
0,040, 0,035 0,000 HAP (en ng/m ³) 0,020 0,010 0,010 0,000 0,000	Naph T T T T T T T T T T T T T T T T T T T	Acy	Biph	Ace_r	Phe	An	DBT	Fluo	Pyr	BghiF	Bcp	BaA	Chrys + triph	cycloPcdP	BbF	BKF _	Bit				DahA	DacA	BP	unthanthrène	Coronène	DbkF	DaeP	DahP_	DailP
Concentration HAP (en ng/m ³) 1,800 1,400 1,200 0,800 0,400 0,200 0,000	Acy	Biph	Ace		An	DBT	Fluo	Pyr_	Bghif	BcP	BaA	Chrys + triph	cycloPcdP	BbF	BkF	Bjf	Bar	Bep	BaP	Per			Anthanthrène	A			Dahp		

	J6 19/0 (en na	7/2010 z/m³)
	НАР	HAP gazeux
	particulaires	
Naph	0,021	-
Асу	Nd	0,015
Biph	Nd	0,024
Ace	Nd	0,025
Flu	Nd	0,139
Phe	0,014	1,946
An	0,007	0,067
DBT	0,012	0,118
Fluo	0,030	1,190
Pyr	0,028	0,663
BghiF	0,015	0,021
BcP	0,003	0,012
BaA	0,007	0,001
Chrys + triph	0,037	0,019
cycloPcdP	0,008	0,009
BbF	0,019	Nd
BkF	0,006	Nd
BjF	0,009	Nd
BaF	0,001	Nd
BeP	0,016	Nd
BaP	0,001	Nd
Per	Nd	Nd
IP	0,014	Nd
DahA	0,001	Nd
DacA	0,001	Nd
BP	0,027	Nd
Anthanthrène	Nd	Nd
Coronène	0,025	0,009
DbkF	0,001	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,304	4,259

20 juillet 2010 :

	J7 20/07	7/2010 r/m ³)
	(en ng	HAP gazeux
	HAP particulaires	
Naph	0,007	-
Асу	0,003	0,045
Biph	0,026	0,038
Ace	0,014	0,024
Flu	0,003	0,237
Phe	0,018	2,141
An	0,006	0,129
DBT	Nd	0,114
Fluo	0,021	0,765
Pyr	0,015	0,540
BghiF	0,012	0,026
BcP	0,003	0,011
BaA	0,008	0,003
Chrys + triph	0,023	0,014
cycloPcdP	0,006	0,006
BbF	0,012	Nd
BkF	0,005	Nd
BjF	0,005	Nd
BaF	0,019	Nd
BeP	0,017	Nd
BaP	0,010	Nd
Per	0,001	Nd
IP	0,008	Nd
DahA	Nd	Nd
DacA	Nd	Nd
BP	0,015	Nd
Anthanthrène	Nd	Nd
Coronène	0,007	0,007
DbkF	0,001	Nd
DaeP	0,001	Nd
DahP	Nd	Nd
DalP	0,003	Nd
Somme	0,269	4,099

Andernos Site péri-urbain

11 février 2010-18 février 2010

									1	<u>1 ·</u>	fév HÆ	vri AP	ie pa	r 2 Irti	20: icu	10 Iai	<u>)</u> res	S								
											H	٩P	ga	ize	ux											
1,00 Concentration HAP (en ng/m ³) 0,00 0,00 0,10 0,00 0,00	- 00 00 00 00 00 00 00 00 00 00 00 00 00 			9, <u>-</u>																						
() 		Nap				·		<u> </u>	- 188	Ø	Charles 4 tri	cycloPo		8		ō ŏ	ă	•		Dat	Da		Coronè	q	Da	
n HAP (en ng/n 2,000 2,000 4,000																										
3,000 2,000 1,000						_																				
0,000	Acy	Biph	Ace Flu	Phe	An		Pyr	BghiF	BcP	BaA I	/s + tripn /cloPcdP	BbF	BkF	BjF	BaF	BaP	Per	4	DahA 1	DacA I	BP	nthrène	oronène	DaeP	DahP	DalP

Andernos Site Péri-urbain Hiver 2010

	J1 11/02 (en na	2/2010 7/m ³)
	(0111)	HAP gazeux
	HAP particulaires	
Naph	0,033	-
Асу	0,026	0,366
Biph	0,013	0,310
Ace	0,025	0,118
Flu	0,075	1,755
Phe	0,577	6,603
An	0,058	0,617
DBT	0,012	0,150
Fluo	0,845	1,952
Pyr	0,547	1,471
BghiF	0,329	0,100
BcP	0,116	0,081
BaA	0,331	0,005
Chrys + triph	0,905	0,053
cycloPcdP	0,151	0,024
BbF	0,669	0,001
BkF	0,320	Nd
BjF	0,418	0,001
BaF	0,052	Nd
BeP	0,474	Nd
BaP	0,317	Nd
Per	0,029	Nd
IP	0,393	Nd
DahA	0,055	Nd
DacA	0,046	Nd
BP	0,411	0,001
Anthanthrène	Nd	Nd
Coronène	0,153	0,010
DbkF	0,091	Nd
DaeP	0,040	Nd
DahP	Nd	Nd
DalP	0,130	Nd
Somme	7,642	13,619

	J2 12/02 (en ng	2/2010 ;/m³)
	HAP particulaires	HAP gazeux
Naph	0,053	-
Асу	0,014	0,437
Biph	0,033	0,350
Ace	0,125	0,117
Flu	0,039	1,503
Phe	0,223	5,846
An	0,037	0,575
DBT	0,006	0,150
Fluo	0,549	1,875
Pyr	0,398	1,351
BghiF	0,170	0,062
BcP	0,059	0,046
BaA	0,200	Nd
Chrys + triph	0,545	0,047
cycloPcdP	0,109	Nd
BbF	0,511	0,004
BkF	0,191	Nd
BjF	0,260	Nd
BaF	0,059	Nd
BeP	0,328	0,007
BaP	0,172	Nd
Per	0,017	Nd
IP	0,302	Nd
DahA	0,038	Nd
DacA	0,037	Nd
BP	0,333	0,053
Anthanthrène	Nd	Nd
Coronène	0,119	0,019
DbkF	0,059	Nd
DaeP	0,030	Nd
DahP	Nd	Nd
DalP	0,059	Nd
Somme	5,075	12,442

0,600

0,500

0,400

0,300

0,200

0,100

Concentration HAP (en ng/m³)

Andernos Site Péri-urbain Hiver 2010 12 février 2010 HAP particulaires HAP gazeux

<u>14 février 2010 :</u>

								НА	P	pa	rtio	cul	air	es					
						•		HA	٩P	ga	zei	ux							
	0 700																		
(°r	0,700							_											
n/gr	0,600																		
P (en	0,500	[
n HA	0,400	[
tratio	0,300						1				1								
ncen	0,200			1	Π	1		L		1									
ŭ	0,100				Π							1						h	
		Ž						T							_	_	<u>-</u>	D	
		N						Chrys	•								Anthanth		
	7,000	2 						Chrys									Anthanth		
g/m³)	7,000 6,000							Chrys	• 								Anthanth		
(en ng/m³)	7,000 6,000 5,000		 					Chrys									Anthanth		
HAP (en ng/m³)	7,000 6,000 5,000 4,000	₽ 						Chrys									Anthanth		
tion HAP (en ng/m³)	7,000 6,000 5,000 4,000 3,000	₹N						Chrys									 Anthanth		
entration HAP (en ng/m ³)	7,000 6,000 5,000 4,000 3,000 2,000	P						Chrys	· · · · · · · · · · · · · · · · · · ·								Anthanth		
Concentration HAP (en ng/m ³)	7,000 6,000 5,000 4,000 3,000 2,000 1,000							Chrys									Anthanth		

Andernos Site Péri-urbain Hiver 2010

	J4 14/02/201	0 (en ng/m³)
	HAP particulaires	HAP gazeux
Naph	0,014	-
Асу	0,008	0,277
Biph	Nd	0,334
Ace	Nd	0,086
Flu	0,016	1,411
Phe	0,163	6,865
An	0,025	0,758
DBT	Nd	0,112
Fluo	0,374	2,032
Pyr	0,258	1,543
BghiF	0,186	0,083
BcP	0,071	0,067
BaA	0,267	0,007
Chrys + triph	0,602	0,057
cycloPcdP	0,121	0,026
BbF	0,466	0,001
BkF	0,182	Nd
BjF	0,266	0,001
BaF	0,076	Nd
BeP	0,329	Nd
BaP	0,236	Nd
Per	0,027	Nd
IP	0,283	Nd
DahA	0,040	Nd
DacA	0,042	Nd
BP	0,298	Nd
Anthanthrène	0,010	Nd
Coronène	0,098	0,007
DbkF	0,065	Nd
DaeP	0,044	Nd
DahP	Nd	Nd
DalP	0,098	Nd
Somme	4,664	13,666

	J5 15/0 (en ng	2/2010 ;/m³)
	HAP particulaires	HAP gazeux
Naph	0,049	-
Асу	0,008	0,707
Biph	Nd	0,373
Ace	Nd	0,145
Flu	0,010	2,075
Phe	0,264	9,634
An	0,044	1,129
DBT	0,005	0,153
Fluo	0,459	2,744
Pyr	0,403	2,129
BghiF	0,426	0,096
BcP	0,206	0,085
BaA	0,289	0,014
Chrys + triph	1,304	0,046
cycloPcdP	0,276	0,020
BbF	0,816	Nd
BkF	0,331	Nd
BjF	0,498	Nd
BaF	0,024	Nd
BeP	0,573	0,003
BaP	Nd	Nd
Per	Nd	Nd
IP	0,600	Nd
DahA	0,070	Nd
DacA	0,065	Nd
BP	0,605	0,004
Anthanthrène	Nd	Nd
Coronène	0,246	0,009
DbkF	0,063	Nd
DaeP	0,017	Nd
DahP	Nd	Nd
DalP	0,089	Nd
Somme	7,740	19,369

Andernos Site Péri-urbain Hiver 2010 15 février 2010

<u>16 février 2010 :</u>

								-	16) T(ev	rie	er	20	01	0									
										H	AP	pa	rt	icu	ıla	ire	es								
										Н	AF) ga	aze	eux	C										
	1,200	-1 -																							
(m³)	1,000	-		 		 				-															
en ng	0,800	-		 		 																			
n HAP	0,600	┢		 		 						┢		1				┠		-	-				
ntratio	0,400	┢		 		 1	•		_				П	┝		╏		┝							
Conce	0,200	\vdash			1	 ╏				$\left \right $	1		H										_		
	0,000	4	<u>א</u> רק	 2		2	5 !	± 9	Ļ	Ļ			L L			4	7	7 7 7	 :	- -	e	e	ب ب	-	<u> </u>
										Chry	0										Antha	0			
:	14,000	1		 		 																			
ŝ																									
5	12,000	+		 T																					
en ng/m	12,000 10,000					 																			
AP (en ng/m	12,000 10,000 8,000					 																			
on HAP (en ng/m	12,000 10,000 8,000 6,000					 																			
ntration HAP (en ng/m	12,000 10,000 8,000 6,000 4,000																								
oncentration HAP (en ng/m	12,000 10,000 8,000 6,000 4,000 2,000																								
Concentration HAP (en ng/m	12,000 10,000 8,000 6,000 4,000 2,000 0,000	Acv 🍌 🕇 🕇 🕇 🕇	Biph de Ace	Phe	An	Pyr	shir	BcP	BaA _	triph		BKF	BjF	Baf	BeP	BaP_1	Per	ii -	DacA	BP	rène	lène J	ObkF	DaeP	JahP

Andernos Site Péri-urbain Hiver 2010

	J6 16/02/201	0 (en ng/m³)
	HAP particulaires	HAP gazeux
Naph	0,048	-
Асу	0,011	0,384
Biph	Nd	0,269
Ace	Nd	0,084
Flu	0,013	1,321
Phe	0,220	12,788
An	0,038	1,679
DBT	0,022	0,305
Fluo	0,416	4,510
Pyr	0,339	3,575
BghiF	0,234	0,357
BcP	0,123	0,235
BaA	0,343	0,282
Chrys + triph	1,102	0,488
cycloPcdP	0,230	0,213
BbF	0,929	0,002
BkF	0,405	Nd
BjF	0,591	0,002
BaF	0,058	Nd
BeP	0,655	0,008
BaP	0,666	Nd
Per	0,006	Nd
IP	0,673	Nd
DahA	0,088	Nd
DacA	0,088	Nd
BP	0,680	0,011
Anthanthrène	Nd	Nd
Coronène	0,326	0,011
DbkF	0,088	Nd
DaeP	0,043	Nd
DahP	Nd	Nd
DalP	0,094	Nd
Somme	8,529	26,522

<u>18 février 2010 :</u>

				1	18	fé\ HAI	/rie P pa	er 2 ortio	2 0 1 cula	L O lire	S					
				1		HA	P ga	zei	XL							
2,000	1															
ິE 1,800																
ຍິ 1,600																
ق 1,400																
¥ 1,200	-															
٥ <u>ــــــــــــــــــــــــــــــــــــ</u>														1		
0,800										H		\square	_			
0,600						H		П		H		E	_		-	
3 0,400				_		H	T	Н		Н		F	_		E	
0,200						HF	H	Н		H					1	1
						ĥ	•							Anth	-	
14,000	[1														
14,000																
14,000 E 12,000 E 10,000																
14,000 12,000 10,000 8,000																
14,000 12,000 10,000 8,000																
(July 14,000 (July 12,000 10,000 8,000 6,000																
14,000 12,000 10,000 8,000 4,000 4,000																
14,000 12,000 10,000 8,000 6,000 4,000 2,000																
14,000 12,000 10,000 8,000 4,000 2,000 0,000																

Andernos Site Péri-urbain Hiver 2010

	J7 18/02	2/2010 (m ³)
	(en hg	HAP gazeux
	HAP particulaires	Bazean
Naph	0,009	-
Асу	0,007	0,155
Biph	0,013	0,088
Ace	Nd	0,031
Flu	0,002	0,828
Phe	Nd	13,555
An	Nd	2,227
DBT	Nd	0,182
Fluo	0,137	3,792
Pyr	0,170	3,514
BghiF	0,568	0,372
BcP	0,267	0,244
BaA	1,148	0,225
Chrys + triph	1,856	0,261
cycloPcdP	0,384	0,112
BbF	1,189	0,001
BkF	0,584	Nd
BjF	0,821	0,002
BaF	0,346	Nd
BeP	0,896	0,008
BaP	1,059	Nd
Per	0,220	Nd
IP	0,858	Nd
DahA	0,123	Nd
DacA	0,146	Nd
BP	0,992	0,010
Anthanthrène	0,177	Nd
Coronène	0,481	0,010
DbkF	0,149	Nd
DaeP	0,227	Nd
DahP	0,185	Nd
DalP	0,015	Nd
Somme	13,028	25,616

Cap-Ferret Site péri-urbain

01 sept 2010-08 sept 2010

			(01 s	ept	ten	hbr	e 20	01(<u>0</u>				
					H	IAP	part	ticul	aire	es				
					•	IAP	gaz	eux						
0,050 -		 				_					 			
<u></u> 0,045 -											 			
⊑0,040 -		 									 			
u 0,035 -														
O,030 -		 1	1		-									
표 0,025 - 도			h											
- 0,020 -			П									_		
1,0,015 -														
0,010 -														
0,005 -												_		
					Chrys	cyc						Anthar	5	
1,400	1	 												
1,400 (قط 1,200											 			
1,400 (E ^{II} ,200 ua 1,000														
1,400 (en ng/m ₃) 1,000 0,800											 			
1,400 1,200 1,000 1,000 0,800 0,600														
1,400 (en ng/m ³) 0000 0000 0000 0000 0000 0000											 			
1,400 (centration HAP (en ng/m ³) 008'0 008'0 009'0 009'0											 			
1,400 Concentration HAP (en ng/m ³) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000											 			
1,400 (000 governtration 1,000 0,800 0,600 0,400 0,400 0,200 0,000						4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -							بة	

Cap-Ferret S	ite Péri-urbain	Eté 2010

	J1 01/ (en ng	09/10 g/m³)
	HAP particulaires	HAP gazeux
Naph	0,022	-
Асу	0,004	0,020
Biph	0,003	0,038
Ace	0,022	0,058
Flu	0,006	0,358
Phe	0,029	1,272
An	0,014	0,091
DBT	Nd	0,084
Fluo	0,029	0,430
Pyr	0,025	0,305
BghiF	0,016	0,016
BcP	0,003	0,007
BaA	0,011	0,008
Chrys + triph	0,027	0,034
cycloPcdP	0,013	0,015
BbF	0,049	0,002
BkF	0,018	Nd
BjF	0,021	0,079
BaF	0,022	Nd
BeP	0,030	Nd
BaP	0,030	Nd
Per	0,002	Nd
IP	0,028	Nd
DahA	0,003	Nd
DacA	0,005	Nd
BP	0,034	0,001
Anthanthrène	Nd	Nd
Coronène	0,022	Nd
DbkF	0,005	Nd
DaeP	0,004	Nd
DahP	Nd	Nd
DalP	0,006	Nd
Somme	0,502	2,818

02 septembre 2010

HAP particulaires HAP gazeux 0,030 Concentration HAP (en ng/m³) 0,025 0,020 0,015 0,010 0,005 0,000 Anthanthrène Coronène DakF DaeP DahP DahP Naph Acy Biph Biph Phe Phe Phe Phy Baf Baf Baf Baf Baf Baf Baf Dah A Dah A Dat A Dat A

	J2 02/0 (en ng	09/10 ;/m³)
	HAP particulaires	HAP gazeux
Naph	0,014	-
Асу	0,002	0,004
Biph	Nd	0,012
Ace	0,029	0,013
Flu	0,003	0,128
Phe	0,024	0,512
An	0,013	0,052
DBT	Nd	0,045
Fluo	0,013	0,295
Pyr	0,011	0,239
BghiF	0,003	0,013
BcP	0,001	0,006
BaA	0,003	0,001
Chrys + triph	0,008	0,019
cycloPcdP	0,003	0,008
BbF	0,012	0,002
BkF	0,009	Nd
BjF	0,003	0,070
BaF	0,016	Nd
BeP	0,010	0,002
BaP	0,005	0,005
Per	Nd	Nd
IP	0,005	Nd
DahA	Nd	Nd
DacA	Nd	Nd
BP	0,006	Nd
Anthanthrène	Nd	0,007
Coronène	0,003	0,011
DbkF	Nd	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,194	1,443

J3 03/09/10

												F F	IA IA	P	pa ga	rt Ize	ic eu	ula x	aiı	re	5											
HAP (en ng/m³)	0,050 0,045 0,040 0,035 0,030 0,030																															
Concentration	0,020 0,015 0,010 0,005																	1														
	0,000	Naph	Acy	biph Ace	Flu	Phe	An	DBT	Fluo	Pyr	BghiF	BcP	BaA	Chrys + triph	cycloPcdP	BbF	BkF	BjF	BaF	BeP	BaP	Per	₫.	DahA	DacA	BP	Anthanthrène	Coronène	DbkF	DaeP	DahP	DalP
g/m³)	1,200				1																											-
, (en ກ _ິ	0,800																															_
н н	0,600	_																														-
tratior	0,400																															_
Concent	0,200								1																							-
	0,000	Acy	Biph	Flu	Phe	An	DBT	Fluo	Pyr Bahit			BaA	Chrys+triph	cycloPcdP	BbF	BKF	BjF	BaF	BeP	BaP	Per	4	DahA I	DacA	BP	Anthanthrène	Coronène	DbkF	DaeP	DahP	Dalp	7

Cap-Ferret Site Péri-urbain Eté 2010 03 septembre 2010

(en ng/m³) HAP HAP gazeux particulaires -0,015 Naph 0,005 Асу Nd 0,034 0,052 Biph 0,048 0,045 Ace Flu 0,007 0,184 0,036 1,107 Phe 0,066 Nd An Nd 0,064 DBT Fluo 0,014 0,272 Pyr 0,008 0,194 0,007 0,011 BghiF BcP 0,001 0,005 0,004 0,004 BaA 0,011 0,019 Chrys + triph cycloPcdP 0,007 0,009 0,001 0,038 BbF 0,007 BkF Nd BjF 0,006 Nd BaF 0,036 Nd BeP 0,034 0,006 0,015 BaP Nd 0,008 Nd Per IP 0,013 Nd DahA Nd Nd DacA Nd Nd BP 0,014 0,008 Anthanthrène Nd Nd Coronène 0,008 0,010 DbkF 0,003 Nd DaeP Nd Nd DahP Nd Nd DalP 0,003 Nd Somme 0,376 2,063

										на На	P f	par gaz	tic	ula x	ire	es									
0,030 (E ^m /B																									
0,020	┢											┨			1		-1	\vdash		1					
ᠳ - 0,015							1			_	┝						_								
0,010								L		_												1			
u 0.005													-	-											
Ŭ																							L		
	Naph	Bipł	Ace	ч. Ч	A	DB	PV	Bghi	Bcl	Ba/ Ba/	cycloPcdl	Bbl	Bi	Ba	Bel	Bal	9 <u>–</u>	Dah/	Dac/	BI	lanthrèn	Coronène	Dael	Dahl	Dal
ີ 〔 ຍຸງ,400	ī_																								
(_ε ແ 1,400 1,200																									
HAP (en ng/m ³) 1,200 1,000				ł																					
on HAP (en ng/m ³) 1,400 1,200 0,800																									
ntration HAP (en ng/m ³) 1'100 100 100 100 100 009'0 000'1 100 100 100 100 100 100 100 100																									
oncentration HAP (en ng/m ³) 1'700 10000 10000 00000 00000 00000 00000 00000																									
Concentration HAP (en ng/m ³) 1,200 0,000 0,400 0,400 0,400 0,400																									

Cap-Ferret Site	<u>Péri-urbain</u>	Eté 2010

	J4 04/09/10 (en ng/m ³)									
	HAP particulaires	HAP gazeux								
Naph	0,029	-								
Асу	Nd	0,009								
Biph	Nd	0,080								
Ace	Nd	0,035								
Flu	Nd	0,245								
Phe	0,004	1,354								
An	0,007	0,082								
DBT	Nd	0,067								
Fluo	0,016	0,393								
Pyr	0,011	0,274								
BghiF	0,004	0,020								
BcP	0,002	0,011								
BaA	0,002	0,015								
Chrys + triph	0,017	0,044								
cycloPcdP	0,003	0,020								
BbF	0,022	0,007								
BkF	0,005	0,002								
BjF	0,007	0,003								
BaF	Nd	Nd								
BeP	0,020	0,003								
BaP	Nd	Nd								
Per	Nd	Nd								
IP	0,021	Nd								
DahA	0,002	Nd								
DacA	0,002	Nd								
BP	0,020	Nd								
Anthanthrène	Nd	Nd								
Coronène	0,011	0,006								
DbkF	0,002	Nd								
DaeP	0,001	Nd								
DahP	Nd	Nd								
DalP	0,001	Nd								
Somme	0,210	2,671								

D5 septembre 2010 HAP particulaires HAP gazeux

	J5 05/((en ne	09/10 (/m³)
	НАР	HAP gazeux
	particulaires	
Naph	0,016	-
Асу	Nd	0,003
Biph	Nd	0,043
Ace	Nd	0,017
Flu	Nd	0,051
Phe	Nd	0,539
An	0,006	0,026
DBT	0,005	0,023
Fluo	0,016	0,391
Pyr	0,013	0,225
BghiF	0,004	0,017
BcP	0,002	0,008
BaA	0,002	0,006
Chrys + triph	0,015	0,035
cycloPcdP	0,003	0,016
BbF	0,015	0,003
BkF	0,003	Nd
BjF	0,004	0,002
BaF	Nd	Nd
BeP	0,009	0,001
BaP	0,006	Nd
Per	0,001	Nd
IP	0,011	Nd
DahA	0,001	Nd
DacA	0,001	Nd
BP	0,014	Nd
Anthanthrène	Nd	Nd
Coronène	0,007	0,007
DbkF	0,001	Nd
DaeP	0,002	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,158	1,412

<u>06 septembre 2010 :</u>

			<u>06</u> 9	sept	emb	ore	20	10							
				НАР	part	icul	aire	s							
				НАР	gaze	eux									
0,010	1														
<u>م</u> 0,009					1										
0,008 🖌															
u 0,007															
0,006					Н										
표 0,005			1		Н										
0,004										1					
0,003															
0,002															
0,001	Ĩ														
0,000	Naph Acy Biph Ace	Flu Phe An DBT	Fluo Pyr BøhiF	BcP BaA	+ triph JoPcdP BhF	BkF	BaF	BeP BaP	Per	DahA	DacA	uthrène	ronène	DaeP	Dahp
0,000	Naph Acy Biph Ace	Flu Phe An DBT	Fluo Pyr Behif	BaA	Chrys + triph cycloPcdP BhF	BkF	BaF -	BeP BaP	Per	DahA	BP	Anthanthrène	Coronène	DaeP	Dahp
0,400	Naph Acv	Flu Phe An DBT	Fluo Pyr Rehif	BCP	Chrys + triph cycloPcdP RhF	BkF	Baf	Bap Bap	Per	DahA	DacA	Anthanthrène	Coronène	Daep	Dahp
0,400 E 0,350	Acy Biph	An DBT	Fluo Pyr Berif	BCP BaA	Chrys + triph cycloPcdP RhF	BkF	Baf	Bep Bap	Per	DahA	DacA RD	Anthanthrène	Coronène	Daep	DahP
0,400 0,350	Acy Biph	An DBT	Fluo Pyr Rehif	Bab	Chrys + triph cycloPcdP BhF	BkF	Baf	Bap Bap	Per	DahA	DacA	Anthanthrène	Coronène	Daep	DahP
0,400 E 0,350 200,000	Acy Biph	An DBT	Fluo PVr	Bab	Chrys + triph cycloPcdP BhF	Bkr	Baf	Bap	Per	DahA	DacA	Anthanthrène	Coronène	DaeP	DahP
0,000 (, m 0,350 0,300 0,300 0,250	Act Act	An DBT	Fluo Pyr	BaA	Chrys + triph cycloPcdP BhF	88 87 1 1 1 1	Baf	8eP	Per	DahA	Dack Rp	Anthanthrène	Coronène	DaeP	Dahp
0,400 (E 0,350 0,300 0,250 0,200	Act 1		Fluo Pyr BachiF	BaA	Chrys + triph cycloPcdP RhF		Baf	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- Ger		DacA	Anthanthrène	Coronène	DaeP	Dah
0,000 0,000 0,350 0,350 0,300 0,250 0,250 0,250 0,250	Act Act	Phe	Fluo	BaA	Chrys + triph cycloPcdP B4F			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			DacA	Anthanthrène	Coronène	DaeP	Dahp
0,000 0,000 0,000 0,350 0,300 0,250 0,150 0,150 0,100	Act Act		Fluo	BaA	Chrys + triph cydoPcdP BhF		01 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Anthanthrène	Coronène	DaeP	Dahp
0,000 0,400 0,350 0,350 0,200 0,150 0,100 0,100		Phe	Fluo	84A	Chrys + triph Chrys + triph Chrys + triph RhF			8eP				Anthanthrène	Coronène		Dahp
0,000 0,000 0,350 0,350 0,250 0,250 0,150 0,100 0,050		Phe		BaA	Chrys + triph cycloPcdP BhF			8eP				Anthanthrène	Coronène		Dahp

	J6 06/09/10 (en ng/m³)									
	(en ng									
	HAP	TIAI gazeux								
	particulaires									
Naph	Nd	-								
Асу	Nd	0,032								
Biph	Nd	0,096								
Ace	Nd	0,043								
Flu	Nd	0,073								
Phe	Nd	0,362								
An	Nd	0,016								
DBT	Nd	0,018								
Fluo	0,005	0,144								
Pyr	0,003	0,088								
BghiF	0,001	0,004								
BcP	0,001	0,003								
BaA	0,002	0,001								
Chrys + triph	0,009	0,008								
cycloPcdP	0,002	0,004								
BbF	0,007	Nd								
BkF	0,002	Nd								
BjF	0,001	Nd								
BaF	Nd	Nd								
BeP	0,004	Nd								
BaP	0,003	Nd								
Per	0,001	Nd								
IP	0,004	Nd								
DahA	Nd	Nd								
DacA	Nd	Nd								
BP	0,004	Nd								
Anthanthrène	Nd	Nd								
Coronène	0,002	0,006								
DbkF	Nd	Nd								
DaeP	Nd	Nd								
DahP	Nd	Nd								
DalP	Nd	Nd								
Somme	0,051	0.820								

D7 septembre 2010 HAP particulaires HAP gazeux

	J7 07/09/10 (en ng/m3)									
		HAP gazeux								
	HAP particulaires									
Naph	0,002	-								
Асу	Nd	0,003								
Biph	Nd	0,007								
Ace	Nd	0,008								
Flu	0,002	0,096								
Phe	Nd	0,421								
An	0,003	0,052								
DBT	Nd	0,034								
Fluo	0,002	0,219								
Pyr	0,001	0,172								
BghiF	0,001	0,011								
BcP	0,001	0,004								
BaA	0,001	0,005								
Chrys + triph	0,003	0,019								
cycloPcdP	0,002	0,008								
BbF	0,006	0,004								
BkF	0,003	0,001								
BjF	0,002	0,057								
BaF	0,014	Nd								
BeP	0,010	Nd								
BaP	0,003	Nd								
Per	0,001	Nd								
IP	0,004	Nd								
DahA	Nd	Nd								
DacA	Nd	Nd								
BP	0,005	0,002								
Anthanthrène	Nd	Nd								
Coronène	0,002	0,007								
DbkF	Nd	Nd								
DaeP	Nd	Nd								
DahP	Nd	Nd								
DalP	Nd	Nd								
Somme	0,067	1,129								

													н	A	Ρ	p	ar	rti	C	ula	ai	re	s											
													Н	IA	Ρ	g	az	ze	u	x														
	0,009	T										1																						
ò	0,008																																	
-	0,007																																	
	0,006	1				1						ľ																						
	0,005	1				1						ľ			1	ī	Г																	
	0,004	+				1						ŀ				Η	F																	
	0,003	+			_	1						ŀ				Н	ŀ																	
	0,002	+	-		ł	1			1		Η	ŀ				Н	ŀ																	
	0,001									$\left \right $	Η	┢		1		Η	┢								1				-		_			
	0,000				-			-		Ļ	Ļ	Ļ				Ļ		-	_	-		-	-	-		-	-		-	-	Ļ	-		-
		Naph	Acy Bibh	Ace	Ъ	Phe	An	DB1	Fluc	Руі	, Buhit	Illiga	BcF	BaA	Chrvs + triph	apodobod b		Bb	BKI	BJİ	Baf	BeF	BaP	Per	4	DahA	DacA	BF	Anthanthrène	Coronène	DbkF	DaeF	DahF	DalF

Cap-Ferret Site Péri-urbain Eté 2010

	J7 08/09/10 (en ng/m ³)										
	HAP particulaires	HAP gazeux									
Naph	0,001	-									
Асу	0,002	0,002									
Biph	Nd	0,017									
Ace	Nd	0,013									
Flu	0,002	0,053									
Phe	0,007	0,237									
An	0,003	0,009									
DBT	Nd	0,015									
Fluo	0,003	0,097									
Pyr	0,002	0,052									
BghiF	0,009	0,002									
BcP	Nd	0,002									
BaA	0,001	Nd									
Chrys + triph	0,005	0,004									
cycloPcdP	0,005	0,002									
BbF	Nd	Nd									
BkF	Nd	Nd									
BjF	Nd	Nd									
BaF	Nd	Nd									
BeP	Nd	Nd									
BaP	Nd	Nd									
Per	Nd	Nd									
IP	0,002	Nd									
DahA	Nd	Nd									
DacA	Nd	Nd									
BP	0,002	Nd									
Anthanthrène	Nd	Nd									
Coronène	0,001	0,007									
DbkF	Nd	Nd									
DaeP	Nd	Nd									
DahP	Nd	Nd									
DalP	Nd	Nd									
Somme	0,044	0,512									

0,250

Concentration HAP (en ng/m³) 0'120 0'100 0'100 0'100 0'020

0,000

Cap Ferret Site péri-urbain

17 février 2011-24 février 2011

<u> 17 février 2011 :</u>

L	<u>17 février 2011</u>
gazeux	HAP particulaires
	HAP gazeux
-	
,005	
,026	0,035
,010	έ 0,030
,080	
,832	
,056	¥ 0,020
,024	
,369	Ě 0,010
,255	
,025	
,015	4. 25 년 27 년 28
,006	Velopiting Dia Para Barrana Para Para Para Para Para Para Par
,050	Arth C.
,023	
,008	
,001	0.000
,008	
Nd	2 0,500
,002	<u> </u>
Nd	۹ 0,500
Nd	Б 0,400
Nd	0,300
Nd	ອຼັ 0,200 -
Nd	ğ 0,100
Nd	0000 분류 분류 등 음 분 등 응 분 분 분 등 등 분 분 분 분 분 분 분 분 분 분 분 년 년 년 분 분 분 분
Nd	S S S D D D D D D D D D D D D D D D D D
,009	Anthi
Nd	

Cap-Ferret Site Péri-urbain Hiver 2011

	J1 17/02/2011 (en ng/m ³)										
	(en ng	HAP gazeux									
	HAP particulaires										
Naph	0,012	-									
Асу	0,003	0,005									
Biph	0,010	0,026									
Ace	0,032	0,010									
Flu	0,002	0,080									
Phe	0,017	0,832									
An	0,006	0,056									
DBT	Nd	0,024									
Fluo	0,010	0,369									
Pyr	0,007	0,255									
BghiF	0,006	0,025									
BcP	0,001	0,015									
BaA	0,004	0,006									
Chrys + triph	0,010	0,050									
cycloPcdP	0,003	0,023									
BbF	0,017	0,008									
BkF	0,008	0,001									
BjF	0,008	0,008									
BaF	0,012	Nd									
BeP	0,023	0,002									
BaP	0,009	Nd									
Per	0,001	Nd									
IP	0,012	Nd									
DahA	0,002	Nd									
DacA	0,001	Nd									
BP	0,012	Nd									
Anthanthrène	Nd	Nd									
Coronène	0,005	0,009									
DbkF	0,004	Nd									
DaeP	0,002	Nd									
DahP	Nd	Nd									
DalP	0,004	Nd									
Somme	0,244	1,804									

	J2 18/02 (en ng	2/2011 ;/m³)
	HAP particulaires	HAP gazeux
Naph	0,017	-
Асу	0,005	0,024
Biph	0,021	0,071
Ace	0,019	0,029
Flu	0,006	0,223
Phe	0,036	2,408
An	0,009	0,271
DBT	Nd	0,047
Fluo	0,059	0,752
Pyr	0,055	0,578
BghiF	0,042	0,077
BcP	0,013	0,044
BaA	0,056	0,072
Chrys + triph	0,104	0,190
cycloPcdP	0,027	0,084
BbF	0,216	0,017
BkF	0,108	0,004
BjF	0,142	0,009
BaF	0,032	Nd
BeP	0,179	0,021
BaP	0,146	Nd
Per	0,018	Nd
IP	0,148	0,002
DahA	0,024	Nd
DacA	0,022	Nd
BP	0,163	0,021
Anthanthrène	0,003	Nd
Coronène	0,050	0,013
DbkF	0,033	Nd
DaeP	0,016	Nd
DahP	Nd	Nd
DalP	0,053	Nd
Somme	1,822	4,957

Cap-Ferret Site Péri-urbain Hiver 2011

<u> 19 février 2011 :</u>

<u>19 février 2011</u>			
HAP particulaires			
HAP gazeux			
2 000 -			
1.800			
E 1.600			
c 1,400			
¥ 1,000			
0,600			
ğ 0,400			
0,200			
·····································			
Na Chrys + t - B Anthanthr D Coron D D D D D D D D D			
16,000 14,000 12,000 6,000 4,000 2,000			
Anthanthrein Bar Dah Coronène Bar Chrys Hilu Bar Coronène Bar Coronène Bar Coronène Bar Coronène Bar Dah Coronène Dah Dah Dah Dah Dah Dah Dah Dah Dah Dah			

Cap-Ferret Site Péri-urbain Hiver 2011

	J3 19/02/2011 (en ng/m ³)	
		HAP gazeux
	HAP particulaires	
Naph	0,014	-
Асу	0,008	0,546
Biph	0,036	0,169
Ace	0,012	0,194
Flu	0,008	0,741
Phe	0,103	15,207
An	0,024	2,828
DBT	Nd	0,052
Fluo	0,712	5,937
Pyr	0,790	4,838
BghiF	0,539	0,728
ВсР	0,181	0,468
BaA	1,164	0,727
Chrys + triph	1,170	1,285
cycloPcdP	0,554	0,573
BbF	1,843	0,074
BkF	0,874	0,032
BjF	1,265	0,043
BaF	0,687	Nd
BeP	1,128	0,019
BaP	1,257	Nd
Per	0,303	Nd
IP	1,072	Nd
DahA	0,187	Nd
DacA	0,205	Nd
BP	1,013	Nd
Anthanthrène	0,465	Nd
Coronène	0,320	0,007
DbkF	0,176	Nd
DaeP	0,196	Nd
DahP	0,059	Nd
DalP	0,445	Nd
Somme	16,808	34,469

20 février 2011 :

	J4 20/02/11 (en ng/m ³)		
	HAP particulaires	HAP gazeux	
Naph	0,034	-	
Асу	0,005	0,009	
Biph	0,012	0,021	0,140
Ace	0,055	0,007	Ê 0 120
Flu	0,004	0,059	u/su
Phe	0,028	1,786	- 0,100 e
An	0,014	0,192	0,080 HAP
DBT	Nd	0,023	. <u>5</u> 0,060
Fluo	0,017	1,049	0,040
Pyr	0,015	0,886	u o o o o o o o o o o o o o o o o o o o
BghiF	0,010	0,106	8 0,020
BcP	0,005	0,063	0,000
BaA	0,026	0,060	
Chrys + triph	0,042	0,170	
cycloPcdP	0,010	0,077	
BbF	0,135	0,010	
BkF	0,064	0,003	
BjF	0,067	0,007	1.8
BaF	0,020	Nd	ε 1.6
BeP	0,094	0,004	ີ ເ ເ 1,4
BaP	0,037	Nd	e d 1,2
Per	0,006	Nd	H 1,0
IP	0,080	Nd	8,0 atio
DahA	0,011	Nd	0,6
DacA	0,012	Nd	0,4
BP	0,067	Nd	0,2
Anthanthrène	0,005	Nd	0,0
Coronène	0,016	0,008	
DbkF	0,025	Nd	
DaeP	0,013	Nd	
DahP	Nd	Nd	
DalP	0,026	Nd	
Somme	0,956	4,538	

Cap-Ferret Site Péri-urbain Hiver 2011 20 février 2011

	J5 21/02/11 (en ng/m ³)	
	(011)	HAP gazeux
	HAP particulaires	
Naph	0,020	-
Асу	0,002	0,009
Biph	0,009	0,046
Ace	0,021	0,015
Flu	0,002	0,143
Phe	0,013	0,765
An	0,007	0,032
DBT	Nd	0,025
Fluo	0,007	0,341
Pyr	0,004	0,243
BghiF	0,004	0,037
BcP	0,001	0,026
BaA	0,002	0,010
Chrys + triph	0,008	0,053
cycloPcdP	0,003	0,024
BbF	0,013	0,001
BkF	0,011	Nd
BjF	0,003	0,001
BaF	0,024	Nd
BeP	0,021	Nd
BaP	0,008	Nd
Per	Nd	Nd
IP	0,005	Nd
DahA	Nd	Nd
DacA	Nd	Nd
BP	0,005	Nd
Anthanthrène	Nd	Nd
Coronène	0,003	0,006
DbkF	Nd	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,197	1,777

	J6 22/02/11	
	(en ng	
	НАР	I'M gazeux
	particulaires	
Naph	0,027	-
Асу	0,005	0,064
Biph	0,045	0,072
Ace	0,077	0,024
Flu	0,006	0,232
Phe	0,021	3,424
An	0,006	0,445
DBT	Nd	0,039
Fluo	0,027	0,943
Pyr	0,023	0,752
BghiF	0,018	0,113
BcP	0,006	0,071
BaA	0,029	0,074
Chrys + triph	0,046	0,225
cycloPcdP	0,016	0,100
BbF	0,140	0,015
BkF	0,067	0,004
BjF	0,088	0,007
BaF	0,039	Nd
BeP	0,136	0,005
BaP	0,068	Nd
Per	0,015	Nd
IP	0,111	Nd
DahA	0,023	Nd
DacA	0,023	Nd
BP	0,109	Nd
Anthanthrène	0,016	Nd
Coronène	0,033	0,006
DbkF	0,020	Nd
DaeP	0,021	Nd
DahP	Nd	Nd
DalP	0,057	Nd
Somme	1,317	6,418

Cap-Ferret Site Péri-urbain Hiver 2011 22 février 2011 **HAP** particulaires HAP gazeux 0,140 Concentration HAP (en ng/m³) 0,120 0,100 0,080 0,060 0,040 0,020 0,000 Anthanthrène Coronène Dakf DaeP Dah

	J7 23/02/11	
	(en ng	/ m⁻) ΗΔΡ σατουχ
	HAP particulaires	
Naph	0,015	-
Асу	0,001	0,008
Biph	0,024	0,035
Ace	0,001	0,015
Flu	0,001	0,074
Phe	0,009	0,887
An	0,001	0,048
DBT	0,001	0,017
Fluo	0,006	0,381
Pyr	0,006	0,261
BghiF	0,003	0,032
BcP	0,002	0,020
BaA	0,004	0,048
Chrys + triph	0,011	0,007
cycloPcdP	0,003	0,013
BbF	0,007	0,001
BkF	0,002	Nd
BjF	0,002	Nd
BaF	0,001	Nd
BeP	0,004	Nd
BaP	0,014	Nd
Per	0,002	Nd
IP	0,005	Nd
DahA	Nd	Nd
DacA	Nd	Nd
BP	0,006	Nd
Anthanthrène	Nd	Nd
Coronène	0,004	0,008
DbkF	Nd	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,134	1,854

Cap-Ferret Site Péri-urbain Hiver 2011 23 février 2011 HAP particulaires HAP gazeux

24 février 2011 :

	J7 24/02/11	
	(en ng	(/m) HAP gazeux
	HAP particulaires	Barcan
Naph	0,038	-
Асу	0,004	0,794
Biph	0,068	0,236
Ace	0,013	0,126
Flu	0,003	0,327
Phe	Nd	2,574
An	Nd	0,308
DBT	0,002	0,032
Fluo	0,062	0,637
Pyr	0,039	0,568
BghiF	0,021	0,044
BcP	0,011	0,043
BaA	0,024	0,029
Chrys + triph	0,069	0,032
cycloPcdP	0,016	0,096
BbF	0,076	0,016
BkF	0,027	0,005
BjF	0,041	0,008
BaF	0,002	Nd
BeP	0,061	0,007
BaP	0,021	Nd
Per	0,003	Nd
IP	0,066	Nd
DahA	0,007	Nd
DacA	0,007	Nd
BP	0,059	Nd
Anthanthrène	Nd	Nd
Coronène	0,020	0,007
DbkF	0,009	Nd
DaeP	0,010	Nd
DahP	0,005	Nd
DalP	Nd	Nd
Somme	0,786	5,889

Cap-Ferret Site Péri-urbain Hiver 2011 24 février 2011

Biganos Site Industriel

28 avril 2011-05 mai 2011

28 avril 2011 :

	J1 28/04/2012 (en ng/m ³)	
	(011)	HAP gazeux
	HAP particulaires	
Naph	0,019	-
Асу	0,003	0,173
Biph	0,015	0,149
Ace	0,001	0,050
Flu	0,006	0,334
Phe	0,055	1,413
An	Nd	0,117
DBT	0,004	0,138
Fluo	0,073	0,324
Pyr	0,049	0,253
BghiF	0,014	0,021
BcP	0,009	0,010
BaA	0,032	0,007
Chrys + triph	0,093	0,040
cycloPcdP	0,016	0,018
BbF	0,067	Nd
BkF	0,027	Nd
BjF	0,033	0,001
BaF	0,005	Nd
BeP	0,053	Nd
BaP	0,041	Nd
Per	0,004	Nd
IP	0,035	Nd
DahA	0,005	Nd
DacA	0,005	Nd
BP	0,047	Nd
Anthanthrène	Nd	Nd
Coronène	0,013	0,008
DbkF	0,007	Nd
DaeP	0,004	Nd
DahP	Nd	Nd
DalP	0,010	Nd
Somme	0,745	3,057

Biganos Site Industriel 28 avril 2011 HAP particulaires HAP gazeux 0,100 0,090 Concentration HAP (en ng/m^3) 0,080 0,070 0,060 0,050 0,040 0,030 0,020 0,010 Naph Acv Acv Biph Ace Fluo Phe Fluo Phe Bach Chrys + triph cycloPcdP Bach Bach Bach Chrys + triph cycloPcdP Bach Bach Bach Chrys + triph Chrys 0,000

29 avril 2011 :

	J2 29/04/2011 (en ng/m³)	
	HAP particulaires	HAP gazeux
Naph	0,020	-
Асу	0,003	0,008
Biph	Nd	0,044
Ace	0,004	0,018
Flu	0,004	0,143
Phe	0,028	0,890
An	Nd	0,070
DBT	Nd	0,066
Fluo	0,035	0,288
Pyr	0,023	0,203
BghiF	0,004	0,020
BcP	0,003	0,010
BaA	0,006	0,004
Chrys + triph	0,027	0,043
cycloPcdP	0,004	0,020
BbF	0,035	Nd
BkF	0,011	Nd
BjF	0,014	0,001
BaF	0,001	Nd
BeP	0,024	0,001
BaP	0,005	Nd
Per	Nd	Nd
IP	0,019	Nd
DahA	0,002	Nd
DacA	0,003	Nd
BP	0,022	0,001
Anthanthrène	Nd	Nd
Coronène	0,008	0,008
DbkF	0,004	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,308	1,838

30 avril 2011 :

	J3 30/04/2011	
	(en ng	HAP gazeux
	HAP particulaires	9
Naph	0,008	-
Асу	0,002	0,008
Biph	Nd	0,047
Ace	Nd	0,018
Flu	0,002	0,137
Phe	0,013	0,867
An	Nd	0,064
DBT	0,001	0,067
Fluo	0,023	0,252
Pyr	0,016	0,152
BghiF	0,001	0,016
BcP	0,002	0,007
BaA	0,005	0,006
Chrys + triph	0,017	0,056
cycloPcdP	0,003	0,025
BbF	0,013	0,001
BkF	0,003	Nd
BjF	0,006	0,001
BaF	0,001	Nd
BeP	0,011	Nd
BaP	0,007	Nd
Per	0,001	Nd
IP	0,008	Nd
DahA	0,001	Nd
DacA	0,002	Nd
BP	0,011	Nd
Anthanthrène	Nd	Nd
Coronène	0,005	0,006
DbkF	0,001	Nd
DaeP	0,001	Nd
DahP	Nd	Nd
DalP	0,002	Nd
Somme	0,166	1,732

HAP particulaires HAP gazeux

Biganos Site Industriel 30 avril 2011

<u>01 Mai 2011 :</u>

	J4 01052011 (en ng/m ³)	
	HAP particulaires	HAP gazeux
Naph	0,013	-
Асу	0,002	0,026
Biph	Nd	0,052
Ace	Nd	0,022
Flu	0,002	0,189
Phe	0,027	1,427
An	Nd	0,098
DBT	Nd	0,097
Fluo	0,031	0,358
Pyr	0,025	0,237
BghiF	0,009	0,030
BcP	0,005	0,016
BaA	0,019	0,016
Chrys + triph	0,041	0,066
cycloPcdP	0,008	0,030
BbF	0,076	0,001
BkF	0,026	Nd
BjF	0,037	0,001
BaF	0,006	Nd
BeP	0,048	Nd
BaP	0,026	Nd
Per	0,002	Nd
IP	0,036	Nd
DahA	0,004	Nd
DacA	0,006	Nd
BP	0,046	Nd
Anthanthrène	Nd	Nd
Coronène	0,018	0,006
DbkF	0,007	Nd
DaeP	0,010	Nd
DahP	Nd	Nd
DalP	0,011	Nd
Somme	0,543	2,671

02 Mai 2011 :

Biganos Site Industriel

02 mai 2011

HAP particulaires

HAP gazeux

<u>03 Mai 2011 :</u>

	J6 03/05/11 (en ng/m ³)	
	HAP particulaires	HAP gazeux
Naph	0,005	-
Асу	0,002	0,010
Biph	0,019	0,030
Ace	Nd	0,024
Flu	0,002	0,128
Phe	0,014	0,546
An	Nd	0,092
DBT	Nd	0,047
Fluo	0,013	0,111
Pyr	0,010	0,075
BghiF	0,004	0,005
BcP	0,001	0,003
BaA	0,003	0,001
Chrys + triph	0,012	0,009
cycloPcdP	0,002	0,004
BbF	0,006	Nd
BkF	0,001	Nd
BjF	0,003	Nd
BaF	0,002	Nd
BeP	0,006	Nd
BaP	0,003	Nd
Per	Nd	Nd
IP	0,004	Nd
DahA	Nd	Nd
DacA	Nd	Nd
ВР	0,006	Nd
Anthanthrène	Nd	Nd
Coronène	0,004	0,007
DbkF	Nd	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,124	1,092

03 mai 2011 **HAP** particulaires HAP gazeux 0,020 0,018 Concentration HAP (en ng/m^3) 0,016 0,014 0,012 0,010 0,008 0,006 0,004 0,002 0,000

Biganos Site Industriel

<u>04 Mai 2011 :</u>

	J7 04/0 (en na	5/2011 r/m ³)	
	HAP particulaires	HAP gazeux	
Naph	0,008	-	
Асу	0,002	0,025	
Biph	Nd	0,047	
Ace	Nd	0,033	
Flu	0,002	0,228	
Phe	0,022	0,908	
An	Nd	0,192	
DBT	Nd	0,069	
Fluo	0,017	0,166	
Pyr	0,014	0,130	
BghiF	0,006	0,008	
BcP	0,002	0,004	
BaA	0,008	0,002	
Chrys + triph	0,018	0,014	
cycloPcdP	0,004 0,006		
BbF	0,018 Nd		
BkF	0,006	Nd	
BjF	0,009	Nd	
BaF	0,002	Nd	
BeP	0,017	Nd	
BaP	0,011	Nd	
Per	0,001	Nd	
IP	0,014	Nd	
DahA	0,003	Nd	
DacA	0,003	Nd	
BP	0,021	Nd	
Anthanthrène	Nd	Nd	
Coronène	0,008	0,007	
DbkF	0,003	Nd	
DaeP	0,002	Nd	
DahP	Nd	Nd	
DalP	0,003	Nd	
Somme	0,224	1,838	

Biganos Site Industriel 04 mai 2011

<u>05 Mai 2011 :</u>

	J8 05/05/2011 (ep. pg/m ³)	
	(en ng	HAP gazeux
	HAP particulaires	
Naph	0,009	-
Асу	0,002	0,053
Biph	Nd	0,059
Ace	Nd	0,020
Flu	0,004	0,149
Phe	0,024	1,038
An	Nd	0,182
DBT	0,002	0,075
Fluo	0,035	0,264
Pyr	0,026	0,186
BghiF	0,007	0,011
BcP	0,001	0,005
BaA	Nd	0,001
Chrys + triph	0,028	0,022
cycloPcdP	0,005	0,010
BbF	0,031	0,001
BkF	0,010	Nd
BjF	0,011	Nd
BaF	0,002	Nd
BeP	0,022	Nd
BaP	0,010	Nd
Per	0,001	Nd
IP	0,015	Nd
DahA	0,002	Nd
DacA	0,002	Nd
BP	0,019	Nd
Anthanthrène	Nd	Nd
Coronène	0,010	0,008
DbkF	0,004	Nd
DaeP	0,002	Nd
DahP	Nd	Nd
DalP	0,004	Nd
Somme	0,287	2,085

Le Temple Site rural

26 janvier 2012-01 février 2012

	J1 26/01/2012 (en ng/m ³)	
		HAP gazeux
	HAP particulaires	
Naph	0,002	-
Асу	0,002	0,383
Biph	Nd	0,079
Ace	Nd	0,042
Flu	0,001	0,290
Phe	0,033	1,206
An	0,006	0,107
DBT	Nd	0,011
Fluo	0,081	0,300
Pyr	0,106	0,312
BghiF	0,051	0,023
BcP	0,020	0,013
BaA	0,073	0,009
Chrys + triph	0,116	0,042
cycloPcdP	0,053	0,019
BbF	0,110	0,002
BkF	0,045	Nd
BjF	0,076	0,002
BaF	0,027	Nd
BeP	0,099	0,001
BaP	0,111	Nd
Per	0,017	Nd
IP	0,136	Nd
DahA	0,012	Nd
DacA	0,016	Nd
BP	0,139	Nd
Anthanthrène	0,018	Nd
Coronène	0,060	Nd
DbkF	0,022	Nd
DaeP	0,026	Nd
DahP	Nd	Nd
DalP	0,016	Nd
Somme	1,478	2,839

Le Temple Site rural

26 janvier 2012

HAP particulaires

HAP gazeux

	J2 27/01/2012 (en ng/m ³)	
	(011)	HAP gazeux
	HAP particulaires	
Naph	0,004	-
Асу	0,002	0,363
Biph	Nd	0,148
Ace	Nd	0,051
Flu	0,001	0,545
Phe	0,018	1,870
An	0,003	0,193
DBT	Nd	0,025
Fluo	0,048	0,409
Pyr	0,070	0,423
BghiF	0,053	0,052
BcP	0,020	0,029
BaA	0,091	0,034
Chrys + triph	0,156	0,109
cycloPcdP	0,071	0,049
BbF	0,177	0,004
BkF	0,084	0,001
BjF	0,121	0,003
BaF	0,039	Nd
BeP	0,151	0,001
BaP	0,167	Nd
Per	0,028	Nd
IP	0,208	Nd
DahA	0,020	Nd
DacA	0,026	Nd
BP	0,194	Nd
Anthanthrène	0,027	Nd
Coronène	0,077	0,010
DbkF	0,030	Nd
DaeP	0,033	Nd
DahP	Nd	Nd
DalP	0,023	Nd
Somme	1,943	4,321

	J3 28/01/2012 (en ng/m ³)	
	HAP particulaires	HAP gazeux
Naph	0,006	-
Асу	0,002	0,083
Biph	Nd	0,199
Ace	Nd	0,070
Flu	0,001	0,615
Phe	0,028	1,556
An	0,004	0,048
DBT	0,001	0,037
Fluo	0,057	0,399
Pyr	0,083	0,348
BghiF	0,050	0,024
BcP	0,018	0,012
BaA	0,035	0,003
Chrys + triph	0,109	0,044
cycloPcdP	0,048	0,020
BbF	0,125	0,002
BkF	0,045	Nd
BjF	0,069	0,002
BaF	0,013	Nd
BeP	0,108	0,001
BaP	0,084	Nd
Per	0,010	Nd
IP	0,117	Nd
DahA	0,009	Nd
DacA	0,013	Nd
ВР	0,129	Nd
Anthanthrène	0,003	Nd
Coronène	0,062	0,010
DbkF	0,017	Nd
DaeP	0,016	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	1.261	3.472

Acrossing and the second secon

	J4 29/01/2012 (en ng/m ³)	
	HAP particulaires	HAP gazeux
Naph	0,006	-
Асу	0,002	0,146
Biph	Nd	0,255
Ace	Nd	0,067
Flu	0,002	0,658
Phe	0,040	1,968
An	0,005	0,136
DBT	0,001	0,042
Fluo	0,091	0,381
Pyr	0,110	0,300
BghiF	0,064	0,030
BcP	0,025	0,015
BaA	0,097	0,015
Chrys + triph	0,224	0,057
cycloPcdP	0,098	0,026
BbF	0,205	0,003
BkF	0,085	0,001
BjF	0,128	0,002
BaF	0,040	Nd
BeP	0,177	0,001
BaP	0,182	Nd
Per	0,027	Nd
IP	0,221	Nd
DahA	0,021	Nd
DacA	0,022	Nd
BP	0,222	Nd
Anthanthrène	0,026	Nd
Coronène	0,091	0,010
DbkF	0,026	Nd
DaeP	0,037	Nd
DahP	Nd	Nd
DalP	0,019	Nd
Somme	2,293	4,111

Le Temple Site rural 29 janvier 2012

	J5 30/01/2012 (ep.pg/m ³)		
	HAP gazeux		
	HAP particulaires		
Naph	0,009	-	
Асу	0,002	0,217	
Biph	0,023	0,149	
Ace	Nd	0,039	
Flu	0,002	0,269	
Phe	0,036	1,612	
An	0,005	0,098	
DBT	0,001	0,033	
Fluo	0,065	0,516	
Pyr	0,073	0,441	
BghiF	0,034	0,035	
BcP	0,013	0,017	
BaA	0,031 0,010		
Chrys + triph	0,091 0,065		
cycloPcdP	0,040	0,029	
BbF	0,086	0,010	
BkF	0,031	0,002	
BjF	0,049	0,005	
BaF	0,006	Nd	
BeP	0,072	0,003	
BaP	0,080	Nd	
Per	0,005	Nd	
IP	0,094	Nd	
DahA	0,006	Nd	
DacA	0,008	Nd	
BP	0,098	Nd	
Anthanthrène	Nd	Nd	
Coronène	0,057	0,008	
DbkF	0,012	Nd	
DaeP	0,008	Nd	
DahP	Nd	Nd	
DalP	Nd	Nd	
Somme	1,036	3,558	

	J6 31/01/2012 (en ng/m ³)	
	(en ng	HAP gazeux
	HAP particulaires	
Naph	0,006	-
Асу	0,002	0,255
Biph	Nd	0,208
Ace	Nd	0,059
Flu	0,004	0,658
Phe	0,071	3,237
An	0,008	0,140
DBT	0,001	0,061
Fluo	0,142	0,793
Pyr	0,139	0,599
BghiF	0,061	0,057
BcP	0,023	0,027
BaA	0,066	0,011
Chrys + triph	0,195	0,126
cycloPcdP	0,085	0,055
BbF	0,220	0,006
BkF	0,085	0,001
BjF	0,133	0,002
BaF	0,014	Nd
BeP	0,186	0,001
BaP	0,178	Nd
Per	0,012	Nd
IP	0,224	Nd
DahA	0,019	Nd
DacA	0,023	Nd
BP	0,242	Nd
Anthanthrène	0,001	Nd
Coronène	0,116	0,007
DbkF	0,035	Nd
DaeP	0,019	Nd
DahP	Nd	Nd
DalP	0,019	Nd
Somme	2,327	6,304

01 février 2012 :

	J7 01/02/2012 (en ng/m ³)	
		HAP gazeux
	HAP particulaires	
Naph	0,091	-
Асу	0,066	0,178
Biph	0,042	0,582
Ace	0,003	0,086
Flu	0,218	1,212
Phe	1,503	3,170
An	0,090	0,161
DBT	0,019	0,092
Fluo	1,468	0,790
Pyr	1,249	0,479
BghiF	0,489	0,042
BcP	0,223	0,020
BaA	0,300	0,004
Chrys + triph	1,084	0,089
cycloPcdP	0,465	0,040
BbF	0,770	0,002
BkF	0,275	Nd
BjF	0,376	0,001
BaF	0,036	Nd
BeP	0,497	0,001
BaP	0,713	Nd
Per	0,033	Nd
IP	0,644	Nd
DahA	0,061	Nd
DacA	0,053	Nd
BP	0,607	0,001
Anthanthrène	0,003	Nd
Coronène	0,469	0,008
DbkF	0,159	Nd
DaeP	0,082	Nd
DahP	Nd	Nd
DalP	0,077	Nd
Somme	12,163	6,956

Le Temple Site rural 01 février 2012 HAP particulaires HAP gazeux

Jane de Boy Site Trafic Nord Bassin 09 juillet 2012-15 juillet 2012

	J1 09/07/2012 (en ng/m ³)	
	(011)	HAP gazeux
	HAP particulaires	
Naph	0,054	-
Асу	0,003	0,017
Biph	0,014	0,010
Ace	Nd	0,017
Flu	0,003	0,083
Phe	0,017	0,566
An	0,003	0,048
DBT	Nd	0,036
Fluo	0,021	0,221
Pyr	0,043	0,417
BghiF	0,024	0,015
BcP	0,006	0,012
BaA	0,013	0,002
Chrys + triph	0,057	0,015
cycloPcdP	0,025	0,007
BbF	0,010	Nd
BkF	0,003	Nd
BjF	0,005	0,001
BaF	0,001	Nd
BeP	0,009	0,001
BaP	0,006	Nd
Per	0,001	Nd
IP	0,005	Nd
DahA	Nd	Nd
DacA	Nd	Nd
BP	0,015	0,001
Anthanthrène	0,001	Nd
Coronène	0,013	Nd
DbkF	Nd	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,352	1,467

Somme

1,139

0,275

	J2 10/0 (en na	7/2012 z/m³)	
		HAP gazeux	<u>10 juin</u>
	HAP particulaires		НАР
Naph	0,093	-	НАР
Асу	0,001	0,002	
Biph	Nd	0,010	
Ace	Nd	0,003	0,100
Flu	0,001	0,025	<u> </u>
Phe	0,009	0,342	2, 0,080 -1
An	0,001	0,025	<u><u> </u></u>
DBT	Nd	0,030	4 0,060 - 4 0 050 -
Fluo	0,015	0,213	5,050 5 0,040
Pyr	0,043	0,435	12 0,030 -
BghiF	0,016	0,008	ğ 0,020 -∕
BcP	0,004	0,005	8 _{0,010}
BaA	0,006	0,003	0,000
Chrys + triph	0,035	0,016	Nap Bir As Bir As Bir Bir As Bir Bir Bir As Bir Bir Bir As Bir Bir Bir As Bir As Bir As Bir As Bir As As As As As As As As As As As As As A
cycloPcdP	0,016	0,007	Chry:
BbF	0,006	0,001	
BkF	0,002	Nd	
BjF	0,002	0,001	0,450
BaF	Nd	Nd	ີ E 0,400
BeP	0,005	0,001	<u>፼</u> 0,350 -
BaP	0,003	Nd	<u></u> <u></u> <u></u>
Per	Nd	Nd	북 0,250 -
IP	0,002	Nd	ы 0,200
DahA	Nd	Nd	e 0,150 -
DacA	Nd	Nd	9 0,100 -
BP	0,009	Nd	S 0,050
Anthanthrène	Nd	0,001	Br Physics and Action 1994 (1994) Br Physics Action 1994 (1994) Br CdP Physics Action 1994 (1994) Br CdP Physics Action 1994 (1994) Br CdP Physics Action 1994 (1994) Action 1994 (1994)
Coronène	0,007	0,010	Bg F T = E
DbkF	Nd	Nd	÷
DaeP	Nd	Nd	
DahP	Nd	Nd	
DalP	Nd	Nd	

Jane de Boy Site trafic Nord Bassin <u>et 2012</u>

gazeux

								-		ן ו	JI	le	t 2	20	12	2										
													Н	IAI	Р р	ar	tio	ul	air	es						
													ŀ	IA	Pg	gaz	e	x								
0,0	30					 																				
(, 0,0	25 -	⊢				 																				
en ng 0,0	20 -	⊢									1															
HAP 0,01	15 -																									
tion	10																									
entra					1		-																			
Conc	05 1									. 1		h	1			1	_				1		1			
0,0	00 🕌		<u>ب</u>	, ,	J	 <u>г</u>	•						- u		ш. ш.		-		4	<u>م</u>		e '	a a	<u>ц</u> ,	<u>م</u> ٰ ۲	- -
	Z		6	-			÷.	4 4	ä	Ba	Chrys + trip	cycloPcd	5 8	Ð	Ba	Be	Ca Do	2 -	Dah	Dac	8	uthanthrèn	Coronèn	19D	Dav	Dah
	2	•	8				÷.	а 4 4	ă	Ba	Chrys + trip	cycloPcd		Ð	B	Be	Ga Do	2 -	Dah	Dac	8	Anthanthrèn	Coronèn		Da	Dan
n³) o,	400 -		••		_	0	<u> </u>			Ba	Chrys + trip	cycloPcd		•	<u> </u>	Be			Dah	Dac	8	Anthanthrèn	Coronèn	DPI		Dan
ng/m³) ,0 ,0	400 - 350 -		<u> </u>			<u> </u>	Ē '		<u>,</u> й	а В В	Chrys + trip	cycloPcd			Ē				Dah	Dac	<u></u>	Anthanthrèn	Coronèn			Dan
) (en ng/m ³) o 'o 'o 'o	400 - 350 - 300 -		<u></u>			 <u> </u>			<u> </u>	B.	Chrys + trip	cycloPcd							Dah	Dac	<u></u>	Anthanthrèn	Coronèn			Dan
HAP (en ng/m³) > _o _o _o _o	400 - 350 - 300 - 250 -		<u></u>			<u> </u>			<u> </u>	Ba	Chrys + trip	cycloPcd							Dah	Dac	••	Anthanthrèn	Coronèn	DBI		
tion HAP (en ng/m³) o o o o o o	400 - 350 - 250 - 200 - 150 -		<u></u>						<u> </u>	B	Chrys + trip								Dah	Dac		Anthanthrèn	Coronèn			
ntration HAP (en ng/m³) o o o o o o o	400 - 350 - 250 - 200 - 150 - 100 -									Ba	Chrys + trip								Dah	Dac		Anthanthrèn	Coronèn			
oncentration HAP (en ng/m³) o o o o o o o	400 - 350 - 250 - 200 - 150 - 100 - 050 -									B	Chrys + trip								Dah	Dac		Anthanthrèn	Coronèn			
Concentration HAP (en ng/m³) `o `o `o `o `o `o `o `o	400									Ba	Chrys + trip								A Dah	Dac		he h	De Coronèn			

|--|

	J3 11/07/2012 (en ng/m ³)										
	HAP particulaires	HAP gazeux									
Naph	0,028	-									
Асу	0,001	0,002									
Biph	Nd	0,004									
Ace	Nd	0,004									
Flu	Nd	0,032									
Phe	0,007	0,372									
An	Nd	0,016									
DBT	Nd	0,044									
Fluo	0,006	0,161									
Pyr	0,017	0,386									
BghiF	0,008	0,006									
BcP	0,001	0,004									
BaA	0,003	0,002									
Chrys + triph	0,021	0,010									
cycloPcdP	0,009	0,005									
BbF	0,004	0,002									
BkF	0,001	0,001									
BjF	0,001	0,002									
BaF	Nd	Nd									
BeP	0,002	0,001									
BaP	0,001	0,001									
Per	Nd	Nd									
IP	0,001	0,001									
DahA	Nd	Nd									
DacA	Nd	Nd									
BP	0,004	Nd									
Anthanthrène	Nd	0,001									
Coronène	0,004	0,010									
DbkF	Nd	Nd									
DaeP	Nd	Nd									
DahP	Nd	Nd									
DalP	Nd	Nd									
Somme	0,120	1,067									

	J4 12/07/2012 (en ng/m ³)										
	(en ng	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
	HAP particulaires	HAP gazeux									
	particularies										
Naph	Nd	-									
Асу	Nd	0,001									
Biph	Nd	0,003									
Ace	Nd	0,003									
Flu	Nd	0,018									
Phe	0,003	0,333									
An	Nd	0,018									
DBT	Nd	0,028									
Fluo	0,010	0,198									
Pyr	0,013	0,457									
BghiF	0,002	0,015									
BcP	0,001	0,005									
BaA	0,002	0,003									
Chrys + triph	0,017	0,029									
cycloPcdP	0,008	0,013									
BbF	0,012	0,002									
BkF	0,002	Nd									
BjF	0,003	0,001									
BaF	Nd	Nd									
BeP	0,007	0,001									
BaP	0,002	Nd									
Per	Nd	Nd									
IP	0,003	Nd									
DahA	Nd	Nd									
DacA	Nd	Nd									
BP	0,004	0,001									
Anthanthrène	Nd	Nd									
Coronène	0,003	0,009									
DbkF	Nd	Nd									
DaeP	Nd	Nd									
DahP	Nd	Nd									
DalP	Nd	Nd									
Somme	0,091	1,137									

<u>13 juillet 2012 :</u>

	J5 13/07/2012 (en ng/m ³)									
	(en lig	HAP gazeux								
	HAP particulaires									
Naph	Nd	-								
Асу	0,001	0,004								
Biph	0,007	0,016								
Ace	Nd	0,008								
Flu	Nd	0,031								
Phe	0,006	0,198								
An	Nd	0,011								
DBT	Nd	0,019								
Fluo	0,015	0,148								
Pyr	0,013	0,394								
BghiF	0,002	0,011								
BcP	0,001	0,004								
BaA	0,002	0,001								
Chrys + triph	0,013	0,017								
cycloPcdP	0,006	0,008								
BbF	0,016	0,001								
BkF	0,004	Nd								
BjF	0,004	0,001								
BaF	Nd	Nd								
BeP	0,009	Nd								
BaP	0,004	Nd								
Per	0,001	Nd								
IP	0,006	Nd								
DahA	0,001	Nd								
DacA	0,001	Nd								
BP	0,007	Nd								
Anthanthrène	Nd	Nd								
Coronène	0,004	0,008								
DbkF	Nd	Nd								
DaeP	Nd	Nd								
DahP	Nd	Nd								
DalP	Nd	Nd								
Somme	0,120	0,878								

<u>14 juillet 2012 :</u>

	J6 14/07/2012 (en ng/m ³)										
	(en ng	HAP gazeux									
	HAP particulaires	TIAF gazeux									
Naph	0,023	-									
Acv	Nd	0,001									
Biph	Nd	0.006									
Ace	Nd	0,002									
Flu	Nd	0,030									
Phe	0,003	0,347									
An	Nd	0,012									
DBT	Nd	0,045									
Fluo	0,002	0,156									
Pyr	0,005	0,409									
BghiF	0,001	0,012									
BcP	Nd	0,003									
BaA	0,001	0,002									
Chrys + triph	0,003	0,019									
cycloPcdP	0,002	0,008									
BbF	0,003	0,001									
BkF	0,001	Nd									
BjF	0,001	0,001									
BaF	Nd	Nd									
BeP	0,002	0,001									
BaP	0,001	Nd									
Per	Nd	Nd									
IP	0,001	Nd									
DahA	Nd	Nd									
DacA	Nd	Nd									
BP	0,002	Nd									
Anthanthrène	Nd	Nd									
Coronène	0,001	0,008									
DbkF	Nd	Nd									
DaeP	Nd	Nd									
DahP	Nd	Nd									
DalP	Nd	Nd									
Somme	0,052	1,062									

<u>15 juillet 2012 :</u>

											1! ⊦	5 j 1A	ju P	ill pa	e [:] rt	t 2 icu	20 Ja) <u>1</u> nir	<u>2</u> es												
											ł	HA	Ρ	ga	ze	eux	x														
Concentration HAP (en ng/m³)),080 -),070 -),060 -),050 -),040 -),030 -),020 -),010 -		Acy				An		Fluo			BaA	triph	PedP	BbF	Bkr _	BjF	Bar	Bep	Bap	Per		JahA	Dack	B	rène	nène	DbkF	DaeP_r	DahP_l	
		Naph	Ac			Чd	Ar	DB	Fluc	Py Behil	198	Bar	Chrys + triph	cycloPcdF	Bbl	Bkl	Bjf	Bal	Bel	Baf	Pe	8	Dah	Dack	8	Anthanthrène	Coronène	Dbki	Daef	DahF	
(0,800	ſ				_																									-
ıg/m³	0,700	ł				ľ																									-
(en n	0,600	ſ																													
AAP	0,500	ſ				I																									
on	0,400	ſ																													-
trati	0,300	ŕ				I																									-
ncen	0,200	ł				I			П																						-
S	0,100	ł				I			Η																						-
	0,000	<u>م</u> ا د		 	2		5 7	<u> </u>	-	. 4	٩.	Ą	ų	4	ц,	Ч	ц,	це Г	<u>م</u>	<u>۔</u>	- -	<u> </u>	Ā	٩ ٩	đ	ē	e e	Ч	4	4	-
		Ă	Bip	Ă	ш	τ.	* C	. E	á	Bgh	ň	B	Chrys + trip	cycloPcc	8	8	60	ö	å	B	Ā		Daŀ	Dar	Ш	Anthanthrèr	Coronèr	Dbl	Dae	Daŀ	Ċ

	J7 15/07/2012 (en ng/m ³)									
	(en ng	HAP gazeux								
	HAP particulaires	Ū								
Naph	0,071	-								
Асу	0,002	0,020								
Biph	0,014	0,009								
Ace	Nd	0,012								
Flu	0,002	0,103								
Phe	0,025	0,739								
An	0,004	0,077								
DBT	0,001	0,058								
Fluo	0,032	0,213								
Pyr	0,064	0,425								
BghiF	0,023	0,003								
ВсР	0,004	0,001								
BaA	0,014	Nd								
Chrys + triph	0,032	0,003								
cycloPcdP	0,014	Nd								
BbF	0,017	Nd								
BkF	0,005	Nd								
BjF	0,010	Nd								
BaF	0,002	0,001								
BeP	0,016	Nd								
BaP	0,011	Nd								
Per	0,002	Nd								
IP	0,012	Nd								
DahA	Nd	Nd								
DacA	0,001	Nd								
BP	0,029	0,001								
Anthanthrène	0,001	Nd								
Coronène	0,026	0,008								
DbkF	Nd	Nd								
DaeP	Nd	Nd								
DahP	Nd	Nd								
DalP	Nd	Nd								
Somme	0,435	1,673								

Arcachon Site péri-urbain

16 janvier 2012- 22 janvier 2012

<u> 16 janvier 2012 :</u>

	16 janvier 2012 HAP particulaires									
	HAP gazeux									
(e) 0,450 0,400 0,350 0,350 0,250 0,250 0,150 0,150 0,050 0,000	Maph Acy Biph Ac Bin Pro Bin Bin Bin Bin Bin Bin Bin Bin Bin Bin									
Concentration HAP (en ng/ 4,500 4,000 + 4,500 2,000 + 4,500 1,500 + 1,500 1,000 + 1,500 1,0000 + 1,500 1,0000 + 1										
0,000	Acy Biph An An An An An An An An Anthanthrène Baf Baf Baf Baf Baf Baf Baf Baf Anthanthrène Dach Dach Dach Dach Dach Dach Dach Dach									

Arcachon Site péri-urbain Hiver 2012

	J1 16/01/2012 (en ng/m³)										
		HAP gazeux									
	particulaires										
Naph	Nd	-									
Асу	0,003	0,610									
Biph	Nd	0,263									
Ace	Nd	0,106									
Flu	0,003	0,697									
Phe	0,096	4,593									
An	0,015	0,478									
DBT	Nd	0,023									
Fluo	0,213	1,301									
Pyr	0,219	1,122									
BghiF	0,107	0,113									
BcP	0,045	0,062									
BaA	0,170	0,097									
Chrys + triph	0,378	0,229									
cycloPcdP	0,168	0,102									
BbF	0,429	0,004									
BkF	0,180	0,001									
BjF	0,264	0,002									
BaF	0,048	Nd									
BeP	0,308	0,001									
BaP	0,328	Nd									
Per	0,038	Nd									
IP	0,335	Nd									
DahA	0,033	Nd									
DacA	0,033	Nd									
BP	0,348	0,001									
Anthanthrène	0,006	Nd									
Coronène	0,209	Nd									
DbkF	0,071	Nd									
DaeP	0,058	Nd									
DahP	Nd	Nd									
DalP	0,057	Nd									
Somme	4,164	9,806									

HAP particulaires **HAP** gazeux 1,400 Concentration HAP (en ng/m³) 1,000 0,800 0,400 0,400 0,200 0,000 Anthanthrène Coronène DbkF DaeP DahP DahP BP 14,000 Concentration HAP (en ng/m³) 12,000 10,000 8,000 6,000 4,000

Arcachon Site péri-urbain Hiver 2012 <u>17 janvier 2012</u>

	J2 17/01/2012 (en ng/m ³)										
	HAP particulaires	HAP gazeux									
Naph	0,048	-									
Асу	0,012	3,383									
Biph	Nd	0,720									
Ace	0,002	0,432									
Flu	0,012	2,276									
Phe	0,279	13,717									
An	0,058	2,259									
DBT	0,002	0,269									
Fluo	0,692	4,626									
Pyr	0,786	3,857									
BghiF	0,420	0,405									
BcP	0,189	0,266									
BaA	0,895	0,577									
Chrys + triph	1,285	0,715									
cycloPcdP	0,576	0,319									
BbF	1,101	0,020									
BkF	0,526	0,009									
BjF	0,763	0,013									
BaF	0,389	Nd									
BeP	0,847	0,006									
BaP	1,255	0,002									
Per	0,237	Nd									
IP	1,000	Nd									
DahA	0,123	Nd									
DacA	0,115	Nd									
BP	1,064	0,001									
Anthanthrène	0,263	Nd									
Coronène	0,593	0,010									
DbkF	0,260	Nd									
DaeP	0,283	Nd									
DahP	0,028	Nd									
DalP	0,237	Nd									
Somme	14,339	33,881									

2,000 0,000

- -----

	J3 18/01/2012 (en ng/m ³)									
	HAP particulaires	HAP gazeux								
Naph	Nd	-								
Асу	0,008	0,474								
Biph	Nd	0,189								
Ace	0,002	0,125								
Flu	0,010	0,604								
Phe	0,140	7,818								
An	0,023	1,008								
DBT	0,001	0,142								
Fluo	0,285	4,670								
Pyr	0,240	4,058								
BghiF	0,191	0,582								
BcP	0,061	0,363								
BaA	0,223	0,685								
Chrys + triph	0,391	1,038								
cycloPcdP	0,175	0,468								
BbF	0,730	0,076								
BkF	0,335	0,034								
BjF	0,484	0,047								
BaF	0,114	0,001								
BeP	0,567	0,020								
BaP	0,572	Nd								
Per	0,084	Nd								
IP	0,747	Nd								
DahA	0,079	Nd								
DacA	0,082	Nd								
BP	0,687	Nd								
Anthanthrène	0,035	Nd								
Coronène	0,400	0,011								
DbkF	0,158	Nd								
DaeP	0,146	Nd								
DahP	Nd	Nd								
DalP	0,118	Nd								
Somme	7,090	22,412								

Arcachon Site péri-urbain Hiver 2012

	J4 19/01/2012 (en ng/m ³)					
	HAP particulaires	HAP gazeux				
Naph	Nd	-				
Асу	0,001	0,069				
Biph	0,021	0,119				
Ace	Nd	0,038				
Flu	0,001	0,225				
Phe	0,009	1,890				
An	0,002	0,137				
DBT	Nd	0,116				
Fluo	0,010	1,093				
Pyr	0,013	1,206				
BghiF	0,008	0,150				
BcP	0,003	0,092				
BaA	0,015	0,075				
Chrys + triph	0,034	0,234				
cycloPcdP	0,016	0,105				
BbF	0,042	0,010				
BkF	0,016	0,003				
BjF	0,024	0,006				
BaF	0,005	Nd				
BeP	0,033	0,004				
BaP	0,018	Nd				
Per	0,005	Nd				
IP	0,039	Nd				
DahA	0,003	Nd				
DacA	0,003	Nd				
BP	0,044	Nd				
Anthanthrène	0,003	Nd				
Coronène	0,029	0,008				
DbkF	0,006	Nd				
DaeP	0,007	Nd				
DahP	Nd	Nd				
DalP	0,004	Nd				
Somme	0,416	5,581				

Arcachon Site péri-urbain Hiver 2012 19 janvier 2012

HAP particulaires

0,035	ī															
0,030	-								\vdash			-1				
0,025	-										_			┢		
0,020	-							\vdash			H			⊢		
0,015	-										h	-		⊢	\vdash	
0,010	-				_	⊢			H		H			⊢	\vdash	
0,005	-					┢			╟┠		H					1
0,000																-
	Naph	Biph	Flu	Ar	Fluc	BghiF	BaA	cycloPcdP	BkF	BaF	BaP	Ц	DacA	Anthanth	DbkF	Dahp

Arcachon Site péri-urbain Hiver 2012

	J5 20/01/2012 (en ng/m ³)				
	(en ng	HAP gazeux			
	HAP particulaires				
Nanh	Nd	-			
Acv	Nd	0 049			
Binh	Nd	0.070			
Ace	Nd	0.028			
Flu	Nd	0.216			
Phe	0.006	1,543			
An	0.002	0.095			
DBT	Nd	0.098			
Fluo	0.008	0.638			
Pvr	0,014	0,792			
BghiF	0.005	0.076			
BcP	0.002	0.041			
BaA	0,009	0,039			
Chrys + triph	0,022	0,154			
cycloPcdP	0,010	0,069			
BbF	0,031	0,006			
BkF	0,013	0,002			
BjF	0,019	0,004			
BaF	0,004	Nd			
BeP	0,024	0,002			
BaP	0,016	Nd			
Per	0,003	Nd			
IP	0,032	Nd			
DahA	0,002	Nd			
DacA	0,003	Nd			
BP	0,032	Nd			
Anthanthrène	0,002	Nd			
Coronène	0,021	0,007			
DbkF	Nd	Nd			
DaeP	0,004	Nd			
DahP	Nd	Nd			
DalP	Nd	Nd			
Somme	0,283	3,931			

	J6 21/01/2012 (en ng/m ³)					
	(en ng	HAP gazeux				
	HAP particulaires	Barcan				
Naph	Nd	-				
Асу	Nd	0,019				
Biph	Nd	0,037				
Ace	Nd	0,044				
Flu	Nd	0,132				
Phe	0,002	1,364				
An	0,001	0,112				
DBT	Nd	0,065				
Fluo	0,004	0,691				
Pyr	0,005	0,850				
BghiF	0,003	0,071				
BcP	0,001	0,039				
BaA	0,004	0,040				
Chrys + triph	0,009	0,140				
cycloPcdP	0,005	0,063				
BbF	0,016	0,020				
BkF	0,006	0,005				
BjF	0,009	0,011				
BaF	0,002	Nd				
BeP	0,013	0,010				
BaP	0,010	Nd				
Per	0,001	Nd				
IP	0,026	Nd				
DahA	0,002	Nd				
DacA	0,003	Nd				
BP	0,029	Nd				
Anthanthrène	0,002	Nd				
Coronène	0,017	0,006				
DbkF	0,003	Nd				
DaeP	0,003	Nd				
DahP	Nd	Nd				
DalP	Nd	Nd				
Somme	0,176	3,718				

Arcachon Site péri-urbain Hiver 2012

	J7 22/01/2012				
	(en ກ _ູ	g/m³)			
	HAP	пач gazeux			
	particulaires				
Naph	Nd	-			
Асу	0,001	0,481			
Biph	Nd	0,233			
Ace	Nd	0,087			
Flu	0,001	0,443			
Phe	0,020	2,884			
An	0,003	0,131			
DBT	Nd	0,126			
Fluo	0,031	0,905			
Pyr	0,037	1,077			
BghiF	0,024	0,076			
BcP	0,008	0,037			
BaA	0,055	0,032			
Chrys + triph	0,077	0,136			
cycloPcdP	0,034	0,060			
BbF	0,091	0,012			
BkF	0,046	0,003			
BjF	0,067	0,007			
BaF	0,022	Nd			
BeP	0,072	0,005			
BaP	0,090	Nd			
Per	0,014	Nd			
IP	0,089	Nd			
DahA	0,008	Nd			
DacA	0,008	Nd			
BP	0,100	Nd			
Anthanthrène	0,015	Nd			
Coronène	0,062	0,008			
DbkF	0,013	Nd			
DaeP	0,020	Nd			
DahP	Nd	Nd			
DalP	0,013	Nd			
Somme	1,020	6,743			

Arcachon Site péri-urbain Hiver 2012

22 janvier 2012

HAP particulaires

HAP gazeux

Arcachon Site péri-urbain

16-22 septembre 2011

<u> 16 septembre 2011 :</u>

J1 16/09 (en ng	9/2011 g/m³)	<u>16 septembre 2011</u>	
AP culaires	HAP gazeux	HAP particulaires	
340	-		
001	0,128		
١d	0,032	0,350	
٧d	0,063	Ē 0,300 -	
002	0,256		
021	1,344		
004	0,073	4 0,200	
002	0,068	5 0,150	
017	0,407		
021	0,584		
009	0,033	§ 0,050	
002	0,008		
010	0,007	Naph Acc Briting Briti	
024	0,036	cycle Correction the second	
011	0,017	, v k	
022	0,001		
008	Nd		
011	0,001		
003	Nd	1,400	
019	0,001	E 1,200	
021	Nd		
002	Nd		
022	Nd		
001	Nd	.0,600 -	
002	Nd	Ę 0,400	
040	Nd	ğ 0,200	
001	Nd		
039	Nd	Accy Accession and accy Birtiph Para Birtiph	
١d	Nd	cord	
003	Nd	Ŭ Ĕ	

Arcachon Site péri-urbain Eté 2011

	HAP particulaires	HAP gazeux
Naph	0,340	-
Асу	0,001	0,128
Biph	Nd	0,032
Ace	Nd	0,063
Flu	0,002	0,256
Phe	0,021	1,344
An	0,004	0,073
DBT	0,002	0,068
Fluo	0,017	0,407
Pyr	0,021	0,584
BghiF	0,009	0,033
BcP	0,002	0,008
BaA	0,010	0,007
Chrys + triph	0,024	0,036
cycloPcdP	0,011	0,017
BbF	0,022	0,001
BkF	0,008	Nd
BjF	0,011	0,001
BaF	0,003	Nd
BeP	0,019	0,001
BaP	0,021	Nd
Per	0,002	Nd
IP	0,022	Nd
DahA	0,001	Nd
DacA	0,002	Nd
BP	0,040	Nd
Anthanthrène	0,001	Nd
Coronène	0,039	Nd
DbkF	Nd	Nd
DaeP	0,003	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,656	3,060

	J2 17/09 (en ng	9/2011 g/m³)	
	HAP particulaires	HAP gazeux	
Naph	Nd	-	
Асу	0,001	0,024	
Biph	Nd	0,135	0,045 _
Ace	Nd	0,039	ີຼ_ 0,040
Flu	0,001	0,346	 ۵,035
Phe	0,006	1,502	
An	0,001	0,074	de 0,025
DBT	Nd	0,145	E 0,020
Fluo	0,006	0,600	0.015
Pyr	0,011	0,902	
BghiF	0,004	0,056	
BcP	0,001	0,015	0,000
BaA	0,005	0,019	aph Acv
Chrys + triph	0,014	0,055	Ž
cycloPcdP	0,007	0,026	
BbF	0,018	0,003	
BkF	0,007	0,001	
BjF	0,010	0,003	
BaF	0,001	Nd	<u>_</u> 1,600
BeP	0,017	0,002	للله 1,400
BaP	0,007	Nd	ធ្ល 1,200 –
Per	0,001	Nd	d 1,000
IP	0,021	Nd	표 0,800
DahA	0,001	Nd	
DacA	0,001	Nd	ua 0.400
BP	0,040	Nd	
Anthanthrène	0,001	Nd	0,000
Coronène	0,043	0,011	Acy
DbkF	Nd	Nd	
DaeP	Nd	Nd	
DahP	Nd	Nd	
DalP	Nd	Nd	
Somme	0,226	3,960	

Arcachon Site péri-urbain Eté 2011

17 septembre 2011

	J3 18/09/2012 (en ng/m ³)					
	HAP particulaires	HAP gazeux				
Naph	Nd	-				
Асу	Nd	0,021				
Biph	Nd	0,064				
Ace	Nd	0,019				
Flu	Nd	0,234				
Phe	0,003	1,090				
An	0,001	0,053				
DBT	Nd	0,110				
Fluo	0,003	0,375				
Pyr	0,004	0,711				
BghiF	0,001	0,032				
BcP	Nd	0,007				
BaA	0,002	0,008				
Chrys + triph	0,005	0,034				
cycloPcdP	0,003	0,016				
BbF	0,007	0,002				
BkF	0,002	0,001				
BjF	0,003	0,002				
BaF	0,001	Nd				
BeP	0,007	0,002				
BaP	0,004	Nd				
Per	0,001	Nd				
IP	0,009	Nd				
DahA	Nd	Nd				
DacA	0,001	Nd				
BP	0,020	Nd				
Anthanthrène	0,001	Nd				
Coronène	0,022	0,010				
DbkF	Nd	Nd				
DaeP	Nd	Nd				
DahP	Nd	Nd				
DalP	Nd	Nd				
Somme	0,100	2,790				

Concentration HAP (en ng/m^3)

Arcachon Site péri-urbain Eté 2011 18 septembre 2011 **HAP** particulaires HAP gazeux 0,025 0,020 0,015 0,010 0,005 0,000 Naph Acy Biph Acy Biph Phe Fluo Phe Fluo Phy Baf Baf Baf Baf Baf Baf Baf Anthanthrène Coronène Baf Baf Baf DahA Coronène Dabh Dabh Dabh Dabh Dabh 1,200 Concentration HAP (en ng/m³) 1,000 0,800 0,600 0,400 0,200 0,000 Acy Biph Ace Flu Pyr Pyr Pyr BaA Pyr BaA Chrys + triph BaA BF Chrys + triph Ba BF Chrys + triph Ba BF Pach DahA

Anthanthrène Coronène DbkF DaeP DahP DahP

20 septembre 2011 :

			<u>2</u>	<u>0</u>	ser	ot	en	<u>nbı</u> н	re Al	2(P p	0 <u>1</u> art	<u>1</u> :icu	ılai	res	5					
								Н	IA	Ρg	azo	eu>	C							
Concentration HAP (en ng/m3) 0,040 0,035 0,030 0,020 0,010 0,010 0,000 0,000									3JF					ca 📕						
1,200 (r E 1,000	Nap Ar Big	ά τ 1		Bgh	ĕ	Chrys + trip	cycloPcd		8	ĕ å		ā.	Dah	Dac		Anthanthreit	Idd	Dae	Dah	Da

Arcachon Site péri-urbain Eté 2011

	J5 20/09/2011 (en ng/m³)				
	HAP particulaires	HAP gazeux			
Naph	Nd	-			
Асу	0,002	0,061			
Biph	0,008	0,071			
Ace	Nd	0,076			
Flu	0,003	0,253			
Phe	0,028	1,110			
An	0,004	0,048			
DBT	Nd	0,075			
Fluo	0,037	0,632			
Pyr	0,043	0,768			
BghiF	0,016	0,038			
BcP	0,004	0,014			
BaA	0,016	0,006			
Chrys + triph	0,049	0,043			
cycloPcdP	0,022	0,020			
BbF	0,040	Nd			
BkF	0,014	Nd			
BjF	0,021	Nd			
BaF	0,003	Nd			
BeP	0,004	Nd			
BaP	0,022	Nd			
Per	0,002	Nd			
IP	0,031	Nd			
DahA	0,002	Nd			
DacA	0,003	Nd			
BP	0,044	Nd			
Anthanthrène	Nd	Nd			
Coronène	0,037	0,008			
DbkF	0,004	Nd			
DaeP	0,006	Nd			
DahP	Nd	Nd			
DalP	Nd	Nd			
Somme	0,467	3,224			

21 septembre 2011 :

	J6 21/09/2011 (en ng/m ³)					
	HAP particulaires	HAP gazeux				
Naph	Nd	-				
Асу	0,002	0,048				
Biph	Nd	0,141				
Ace	Nd	0,209				
Flu	0,028	0,506				
Phe	0,140	2,597				
An	0,019	0,062				
DBT	0,006	0,273				
Fluo	0,195	0,706				
Pyr	0,151	0,871				
BghiF	0,021	0,053				
BcP	0,013	0,012				
BaA	0,066	0,009				
Chrys + triph	0,140	0,054				
cycloPcdP	0,063	0,025				
BbF	0,127	0,002				
BkF	0,052	Nd				
BjF	0,054	0,001				
BaF	0,006	Nd				
BeP	0,094	0,001				
BaP	0,114	Nd				
Per	0,013	Nd				
IP	0,099	Nd				
DahA	0,011	Nd				
DacA	0,016	Nd				
BP	0,125	0,001				
Anthanthrène	Nd	Nd				
Coronène	0,076	0,008				
DbkF	0,024	Nd				
DaeP	0,020	Nd				
DahP	Nd	Nd				
DalP	0,011	Nd				
Somme	1,687	5,580				

	J7 22/09/2011 (en ng/m ³)	
	HAP particulaires	HAP gazeux
Naph	Nd	-
Асу	0,003	0,064
Biph	0,025	0,053
Ace	0,021	0,055
Flu	0,015	0,244
Phe	0,094	1,409
An	0,010	0,064
DBT	0,004	0,088
Fluo	0,140	1,052
Pyr	0,116	0,929
BghiF	0,019	0,039
BcP	0,010	0,018
BaA	0,039	0,010
Chrys + triph	0,111	0,089
cycloPcdP	0,050	0,040
BbF	0,108	0,002
BkF	0,042	Nd
BjF	0,045	0,001
BaF	0,003	Nd
BeP	0,081	0,001
BaP	0,088	0,001
Per	0,008	Nd
IP	0,080	Nd
DahA	0,008	Nd
DacA	0,012	Nd
BP	0,102	0,001
Anthanthrène	Nd	Nd
Coronène	0,055	0,008
DbkF	0,021	Nd
DaeP	Nd	Nd
DahP	0,018	Nd
DalP	0,013	Nd
Somme	1,343	4,169

Arcachon Site péri-urbain Eté 2011 22 septembre 2011

Gujan-Mestras

Arcachon Site trafic Sud Bassin

08 juillet 2011-14 juillet 2011

08 Juillet 2011 :

	J1 08/07/2011 (en ng/m ³)	
	HAP particulaires	HAP gazeux
Naph	0,005	-
Асу	0,003	0,016
Biph	0,017	0,023
Ace	Nd	0,010
Flu	0,003	0,058
Phe	0,025	0,535
An	0,004	0,036
DBT	0,001	0,026
Fluo	0,043	0,225
Pyr	0,045	0,259
BghiF	0,016	0,003
BcP	0,004	0,002
BaA	0,011	Nd
Chrys + triph	0,039	0,002
cycloPcdP	0,017	Nd
BbF	0,028	0,001
BkF	0,006	Nd
BjF	0,007	0,001
BaF	0,001	Nd
BeP	0,019	0,002
BaP	0,010	Nd
Per	0,001	Nd
IP	0,009	0,002
DahA	0,001	Nd
DacA	0,001	Nd
BP	0,019	Nd
Anthanthrène	Nd	Nd
Coronène	0,014	0,009
DbkF	Nd	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,349	1,210

Gujan-Mestras - Arcachon Site trafic Sud Bassin <u>8 juillet 2011</u> **HAP** particulaires HAP gazeux 0,045 Concentration HAP (en ng/m³) 0,040 0,035 0,030 0,025 0,020 0,015 0,010 0,005 0,000 DahA DacA BP Anthanthrène Coronène DaeP DaeP DahP ₽

	J2 09/07/2011 (en ng/m ³)					
	HAP particulaires	HAP gazeux				
Naph	0,002	-				
Асу	0,001	0,011				
Biph	Nd	0,016				
Ace	Nd	0,016				
Flu	Nd	0,083				
Phe	0,015	0,632				
An	0,003	0,038				
DBT	0,001	0,033				
Fluo	0,014	0,182				
Pyr	0,020	0,165				
BghiF	0,008	0,005				
BcP	0,001	0,002				
BaA	0,005	Nd				
Chrys + triph	0,017	0,003				
cycloPcdP	0,008	0,002				
BbF	0,008	Nd				
BkF	0,002	Nd				
BjF	0,004	0,001				
BaF	0,001	Nd				
BeP	0,007	0,001				
BaP	0,004	Nd				
Per	0,001	Nd				
IP	0,005	Nd				
DahA	Nd	Nd				
DacA	0,001	Nd				
BP	0,011	0,001				
Anthanthrène	Nd	Nd				
Coronène	0,012	Nd				
DbkF	Nd	Nd				
DaeP	Nd	Nd				
DahP	Nd	Nd				
DalP	Nd	Nd				
Somme	0,150	1,191				

Gujan-Mestras- Arcachon Site trafic

	J3 10/07/2012 (en ng/m ³)				
		HAP gazeux			
	particulaires				
Naph	Nd	-			
Асу	0,001	0,013			
Biph	0,029	0,025			
Ace	Nd	0,013			
Flu	0,001	0,137			
Phe	0,008	0,677			
An	0,003	0,047			
DBT	Nd	0,030			
Fluo	0,012	0,233			
Pyr	0,017	0,188			
BghiF	0,007	0,008			
BcP	0,002	0,004			
BaA	0,009	0,001			
Chrys + triph	0,018	0,008			
cycloPcdP	0,008	0,004			
BbF	0,014	0,001			
BkF	0,005	Nd			
BjF	0,008	0,001			
BaF	0,002	0,001			
BeP	0,011	Nd			
BaP	0,012	Nd			
Per	0,001	Nd			
IP	0,012	0,001			
DahA	0,001	Nd			
DacA	0,001	Nd			
BP	0,020	Nd			
Anthanthrène	0,001	Nd			
Coronène	0,019	0,011			
DbkF	Nd	Nd			
DaeP	Nd	Nd			
DahP	Nd	Nd			
DalP	Nd	Nd			
Somme	0,222	1,410			

	J4 11/07/2011							
	(en ng/m˘)							
	HAP particulaires	TAT gazeux						
Naph	0,001	-						
Асу	0,002	0,011						
Biph	0,008	0,019						
Ace	Nd	0,006						
Flu	0,001	0,071						
Phe	0,017	0,787						
An	0,004	0,038						
DBT	Nd	0,038						
Fluo	0,018	0,482						
Pyr	0,025	0,383						
BghiF	0,008	0,027						
BcP	0,002	0,009						
BaA	0,010	0,004						
Chrys + triph	0,021	0,030						
cycloPcdP	0,009	0,014						
BbF	0,019	Nd						
BkF	0,008	Nd						
BjF	0,012	0,001						
BaF	0,001	Nd						
BeP	0,019	Nd						
BaP	0,014	Nd						
Per	0,001	Nd						
IP	0,018	Nd						
DahA	0,001	Nd						
DacA	0,002	Nd						
BP	0,029	Nd						
Anthanthrène	Nd	Nd						
Coronène	0,026	0,007						
DbkF	Nd	Nd						
DaeP	Nd	Nd						
DahP	Nd	Nd						
DalP	Nd	Nd						
Somme	0,277	1,929						

Sud Bassin <u>12 juillet 2011</u> **HAP** particulaires HAP gazeux 0,035 0,000 Naph Acy Biph Ace An Phe An An An Bur Fluo Bghif Bghif BaA IP DahA DahA BacA Anthanthrène I Coronène DaeP DaeP DaeP DaeP Chrys + triph cycloPcdP BaF BaP Per BbF BKF ΞË 0,600 0,000 Anthanthrène Coronène DbkF DaeP DaeP DahP DahP

Gujan-Mestras-Arcachon Site trafic

		- /				
	J5 12/07/2011 (en ng/m ³)					
		HAP gazeux				
	HAP particulaires					
Naph	0,004	-				
Асу	0,002	0,034				
Biph	0,035	0,055				
Ace	Nd	0,024				
Flu	0,003	0,176				
Phe	0,028	0,600				
An	0,003	0,030				
DBT	Nd	0,041				
Fluo	0,023	0,198				
Pyr	0,028	0,191				
BghiF	0,011	0,005				
BcP	0,003	0,003				
BaA	0,007	Nd				
Chrys + triph	0,026	0,002				
cycloPcdP	0,012	0,001				
BbF	0,016	Nd				
BkF	0,005	Nd				
BjF	0,007	0,001				
BaF	0,001	Nd				
BeP	0,011	Nd				
BaP	0,008	Nd				
Per	0,001	Nd				
IP	0,009	Nd				
DahA	0,001	Nd				
DacA	0,001	Nd				
BP	0,017	Nd				
Anthanthrène	Nd	Nd				
Coronène	0,014	0,008				
DbkF	Nd	Nd				
DaeP	Nd	Nd				
DahP	Nd	Nd				
DalP	Nd	Nd				
Somme	0,274	1,367				

	16 13/0	7/2011				
	(en ng/m ³)					
	НАР	HAP gazeux				
	particulaires					
Naph	0,028	-				
Асу	0,003	0,011				
Biph	0,032	0,019				
Ace	Nd	0,007				
Flu	0,003	0,059				
Phe	0,035	0,998				
An	0,007	0,131				
DBT	0,001	0,036				
Fluo	0,032	1,106				
Pyr	0,058	1,167				
BghiF	0,018	0,170				
BcP	Nd	0,065				
BaA	0,016	0,100				
Chrys + triph	0,042	0,219				
cycloPcdP	0,019	0,098				
BbF	0,066	0,072				
BkF	0,025	0,020				
BjF	0,037	0,040				
BaF	0,004	Nd				
BeP	0,058	0,035				
BaP	0,038	Nd				
Per	0,003	Nd				
IP	0,094	Nd				
DahA	0,006	Nd				
DacA	0,008	Nd				
BP	0,110	0,001				
Anthanthrène	Nd	Nd				
Coronène	0,089	0,007				
DbkF	0,013	Nd				
DaeP	0,008	Nd				
DahP	Nd	Nd				
DalP	Nd	Nd				
Somme	0,850	4,362				

						1	<u>s</u> L4	ju	d E ill	Bas et	ssi 2(<u>n</u> 01	1										
						I		H	IA	Рp	art	tic	ula	ire	es								
						I		I	ΗA	Ρg	az	eu	x										
0,090																							_
E 0,070 -																							
- 0,060 -						⊢																	
dy 0,020 -					1	F			1														-
6 0,040			T		t				E														
e 0,030 -																				1			
0.010 -			4				L		Н		_	_		1	_			ł	_	L			_
0,000 -										ĻĻ							-		_			_	3
	Naph Acy Bipł	Ace	e 4	DBJ	onF (BehiF	BcF	BaA	+ tripr cloPcdF	Bbf	BK	Bal	Bel	Baf		Dah⊿	DacA	8	ithrène ronène	Dbki	DaeF	Dah	Dalt
								t											Anthar	3			
<u>1,000</u>																							
u 0,900	[
ق 0,700	-																						-
-						1																	-
0,600	-				_																		
0,600 HAP uo			E																				_
0,600 U HAP 0,500 0,400 0,400																							_
0,600 0,500 0,400 0,300 0,200																							_
O,600 0,500 0,400 0,200 0,200 0,100																							_
O,600 O,500 O,400 O,300 O,200 O,100 O,100 O,000		9 2		37 •			<u>م</u>		<u>a</u>	1 1	- i	1	L di	- -		P P	, i i	SP -	a a		4	-	
O,600 0,500 0,400 0,300 0,200 0,100 0,000	Acy Biph	Ace Flu	An	DBT	Pvr	BghiF	BcP	BaA	cloPcdP	BbF _	BiF	BaF	BeP	BaP G		DahA	DacA_I	BP	nthrène	DbkF	DaeP	DahP	Dalp

Gujan-Mestras- Arcachon Site trafic

	HAP particulaires	HAP gazeux
Newb	HAP particulaires	
Nert		
Naph	0,018	-
Асу	0,003	0,013
Biph	Nd	0,015
Ace	Nd	0,013
Flu	0,004	0,097
Phe	0,045	0,910
An	0,007	0,085
DBT	Nd	0,041
Fluo	0,050	0,321
Pyr	0,089	0,570
BghiF	0,028	0,015
BcP	Nd	0,006
BaA	0,014	0,001
Chrys + triph	0,046	0,008
cycloPcdP	0,021	0,004
BbF	0,022	Nd
BkF	0,007	Nd
BjF	0,010	0,001
BaF	0,001	Nd
BeP	0,019	0,001
BaP	0,012	Nd
Per	0,001	Nd
IP	0,015	Nd
DahA	0,001	Nd
DacA	0,001	Nd
BP	0,031	0,001
Anthanthrène	Nd	Nd
Coronène	0,028	0,007
DbkF	Nd	Nd
DaeP	Nd	Nd
DahP	Nd	Nd
DalP	Nd	Nd
Somme	0,473	2,108